Kategorien: KI

Interdisziplinarität im Gesundheitswesen

Einblicke in das BZKF BORN-Projekt – Dr. Mandy Wahlbuhl-Becker im Interview

Das Bayerische Onkologische Radiologienetzwerk (BORN) optimiert die Krebsdiagnostik in Bayern durch standardisierte Bildgebung und strukturierte…

Zwei weibliche medizinische Forscherinnen schauen auf einen Computerscreen

RACOON-RESCUE treibt die Versorgung von pädiatrischem Non-Hodgkin-Lymphom voran

Pädiatrisches Non-Hodgkin-Lymphom (NHL) ist der vierthäufigste Tumor bei Kindern und Jugendlichen, doch den radiologischen Methoden in diesem Bereich…

Das Projekt RACOON-RESCUE: Fortschritte in der Diagnostik und Therapie von pädiatrischen Non-Hodgkin-Lymphomen

Pädiatrische Non-Hodgkin-Lymphome (NHL), eine Form des Lymphknotenkrebses, ist die vierthäufigste Tumorart im Kindes- und Jugendalter. Radiologische…

Screenshot einer Prostataläsion in mint Lesion

Beschleunigen Sie das Prostata-Screening mit Prostate.Carcinoma.ai in mint Lesion

Das Prostate.Carcinoma.ai-Plug-in, entwickelt von unserem Partner FUSE-AI, ist eine leistungsstarke Erweiterung für mint Lesion, die speziell zur…

KI-basierte Erkennung von Lungenknoten mit contextflow und Lung-RADS in mint Lesion

Setzen Sie auf KI-gestützte Lungenrundherden-Erkennung und -Analyse für eine umfassende Patientenversorgung

Entdecken Sie die Möglichkeiten eines KI-gestützten und optimierten Lungen-Screenings mit contextflow ADVANCE Chest CT integriert in mint Lesion.…

Bild eines Uterus

Das RACOON FADEN-Projekt widmet sich der Früherkennung von Adenomyose

Endometriose ist eine stark untererforschte Krankheit bei Frauen, die nun endlich durch das RACOON FADEN-Projekt mehr Aufmerksamkeit erhält. In einem…

RACOON FADEN: Pionierarbeit zur Früherkennung von Adenomyose – Einblicke von Prof. Mechsner (Charité Berlin) und Prof. May (Universitätsklinikum Erlangen)

Die Adenomyose ist eine gynäkologische Erkrankung der Gebärmutter und eine Form der Endometriose. Etwa 10 Prozent der Frauen im fruchtbaren Alter sind…

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische…

Schematische Darstellung der Federated-Learning Studie und ihrer Dateninfastruktur

RACOON: Ein Leitfaden zur Überbrückung der Kluft zwischen simulierter und realer Forschung im Bereich des föderalen Lernens

Deep Learning (DL) ist ein wichtiger Bestandteil der radiologischen Bildanalyse geworden. Um diese Deep-Learning-Modelle zu trainieren, ist der Zugang…