Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

[Translate to German:]

KI-basierter Befundungsworkflow auf der Grundlage von Deep-Learning-Technologien

Wir alle werden von Nachrichten überschüttet, die das Potential von künstlicher Intelligenz gerade auch in der Radiologie thematisieren. Der Bedarf dafür ist unstrittig. Durch die Alterung der Bevölkerung, die steigende Anzahl von zu befundenden Bildern sowie die steigende Komplexität bei der Befundung muss die Effizienz und die notwendige Qualitätssicherung unbedingt angegangen werden.

Wir wissen, dass KI-Tools eine entscheidende Rolle im Befundungsworkflow des Radiologen spielen werden. Instrumente, die mit Wissensmodellierung und Machine Learning arbeiten, werden in der Rolle des intelligenten Assistenten die diagnostische Befundeffizienz und -qualität erhöhen.

„Bei Mint Medical verstehen wir Daten. Wir waren eines der ersten Unternehmen, die strukturierte Befundberichte und geführte Befundungen für die Therapieverlaufskontrolle entwickelt haben. Die dabei generierten strukturierten Daten sind heute Grundlage dafür, um mit Hilfe von Deep-Learning-Technologien, innerhalb und über den onkologischen Bereich hinaus, eine Vorreiterrolle einzunehmen“, so Dr. Matthias Baumhauer, Firmengründer und Geschäftsführer von Mint Medical.

Beim diesjährigen 104. Annual Meeting der RSNA in Chicago wird in mint Lesion erstmals der Prototyp eines Assistenten zu sehen sein, der eine Reihe von KI-basierten Technologien verwendet, u.a. eine Deep-Learning-Technologie, die auf einem modifizierten U-Net konvolutionellen neuronalen Netz basiert, welches mit Hunderttausenden Ground-Truth-Daten trainiert wurde.

Der Algorithmus ermöglicht nach einer manuellen Segmentierung der Läsionen in der Baseline, diese Läsionen in den Follow-up-Untersuchungen automatisch zu detektieren, und wird dadurch immer weiter trainiert und optimiert.

Wir glauben daran, dass der radiologische Befundungsworkflow nach und nach weiter automatisiert werden kann und freuen uns, Ihnen weitere Anwendungsfelder in diesem Bereich vorzustellen.

Ähnliche Inhalte

Ähnliche Inhalte

Jemand liest auf einem Laptop einen wissenschaftichen Artikel über CT-Radiomics, Sarkopenie, Magen- oder Speiseröhrenkrebs

CT-Radiomics liefert Erkenntnisse über den Einfluss der Sarkopenie auf die Prognose von Speiseröhren- und Magenkrebs

Bei der Analyse der Daten von 83 Patienten mit kontrastverstärkten CT-Scans verfolgten die Forscher des Universitätsklinikums Ulm die Prävalenz der…

Ein Bild von Prof. Dr. Thorsten Persigehl neben einem Zitat über die Bedeutung von mint Lesion™ für radCIO

Herausforderungen und Chancen des Aufbaus einer umfangreichen onkologischen Bildgebungsdatenbank

In einem exklusiven Interview mit Prof. Dr. Thorsten Persigehl, einem führenden Experten für onkologische Bildgebung, sprachen wir über das…

Herausforderungen und Chancen des Aufbaus einer umfangreichen onkologischen Bildgebungsdatenbank

Strukturierte Daten in der Radiologie sind entscheidend für genaue Diagnosen und Therapieplanung und bilden die Grundlage für eine detaillierte…