Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

[Translate to German:]

KI-basierter Befundungsworkflow auf der Grundlage von Deep-Learning-Technologien

Wir alle werden von Nachrichten überschüttet, die das Potential von künstlicher Intelligenz gerade auch in der Radiologie thematisieren. Der Bedarf dafür ist unstrittig. Durch die Alterung der Bevölkerung, die steigende Anzahl von zu befundenden Bildern sowie die steigende Komplexität bei der Befundung muss die Effizienz und die notwendige Qualitätssicherung unbedingt angegangen werden.

Wir wissen, dass KI-Tools eine entscheidende Rolle im Befundungsworkflow des Radiologen spielen werden. Instrumente, die mit Wissensmodellierung und Machine Learning arbeiten, werden in der Rolle des intelligenten Assistenten die diagnostische Befundeffizienz und -qualität erhöhen.

„Bei Mint Medical verstehen wir Daten. Wir waren eines der ersten Unternehmen, die strukturierte Befundberichte und geführte Befundungen für die Therapieverlaufskontrolle entwickelt haben. Die dabei generierten strukturierten Daten sind heute Grundlage dafür, um mit Hilfe von Deep-Learning-Technologien, innerhalb und über den onkologischen Bereich hinaus, eine Vorreiterrolle einzunehmen“, so Dr. Matthias Baumhauer, Firmengründer und Geschäftsführer von Mint Medical.

Beim diesjährigen 104. Annual Meeting der RSNA in Chicago wird in mint Lesion erstmals der Prototyp eines Assistenten zu sehen sein, der eine Reihe von KI-basierten Technologien verwendet, u.a. eine Deep-Learning-Technologie, die auf einem modifizierten U-Net konvolutionellen neuronalen Netz basiert, welches mit Hunderttausenden Ground-Truth-Daten trainiert wurde.

Der Algorithmus ermöglicht nach einer manuellen Segmentierung der Läsionen in der Baseline, diese Läsionen in den Follow-up-Untersuchungen automatisch zu detektieren, und wird dadurch immer weiter trainiert und optimiert.

Wir glauben daran, dass der radiologische Befundungsworkflow nach und nach weiter automatisiert werden kann und freuen uns, Ihnen weitere Anwendungsfelder in diesem Bereich vorzustellen.

Ähnliche Inhalte

Ähnliche Inhalte

[Translate to German:] Hands holding a glass lung

Vergleich von iRECIST und RECIST 1.1 zur Beurteilung der Immuntherapie bei Melanom und nicht-kleinzelligem Lungenkrebs

In einer retrospektiven Studie am Universitätsklinikum Köln wurden die radiologischen Kriterien iRECIST und RECIST 1.1 zur Beurteilung des…

Universitätsklinikum Köln: Vergleich von iRECIST und RECIST 1.1 zur Beurteilung der Immuntherapie bei Melanom und nicht-kleinzelligem Lungenkarzinom

In der am Universitätsklinikum Köln durchgeführten retrospektiven Studie wurden zwei  Kriterien zur radiologischen Beurteilung des…

Ärzte halten Puzzleteile in der Hand

Entwicklung standardisierter Befundungsvorlagen für Sarkome: Einblicke von Prof. Dr. Wolfgang Kunz

Sarkome sind eine seltene und heterogene Gruppe bösartiger Tumore, die sowohl bei der Diagnose als auch bei der Behandlung erhebliche…