Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

[Translate to German:]

KI-basierter Befundungsworkflow auf der Grundlage von Deep-Learning-Technologien

Wir alle werden von Nachrichten überschüttet, die das Potential von künstlicher Intelligenz gerade auch in der Radiologie thematisieren. Der Bedarf dafür ist unstrittig. Durch die Alterung der Bevölkerung, die steigende Anzahl von zu befundenden Bildern sowie die steigende Komplexität bei der Befundung muss die Effizienz und die notwendige Qualitätssicherung unbedingt angegangen werden.

Wir wissen, dass KI-Tools eine entscheidende Rolle im Befundungsworkflow des Radiologen spielen werden. Instrumente, die mit Wissensmodellierung und Machine Learning arbeiten, werden in der Rolle des intelligenten Assistenten die diagnostische Befundeffizienz und -qualität erhöhen.

„Bei Mint Medical verstehen wir Daten. Wir waren eines der ersten Unternehmen, die strukturierte Befundberichte und geführte Befundungen für die Therapieverlaufskontrolle entwickelt haben. Die dabei generierten strukturierten Daten sind heute Grundlage dafür, um mit Hilfe von Deep-Learning-Technologien, innerhalb und über den onkologischen Bereich hinaus, eine Vorreiterrolle einzunehmen“, so Dr. Matthias Baumhauer, Firmengründer und Geschäftsführer von Mint Medical.

Beim diesjährigen 104. Annual Meeting der RSNA in Chicago wird in mint Lesion erstmals der Prototyp eines Assistenten zu sehen sein, der eine Reihe von KI-basierten Technologien verwendet, u.a. eine Deep-Learning-Technologie, die auf einem modifizierten U-Net konvolutionellen neuronalen Netz basiert, welches mit Hunderttausenden Ground-Truth-Daten trainiert wurde.

Der Algorithmus ermöglicht nach einer manuellen Segmentierung der Läsionen in der Baseline, diese Läsionen in den Follow-up-Untersuchungen automatisch zu detektieren, und wird dadurch immer weiter trainiert und optimiert.

Wir glauben daran, dass der radiologische Befundungsworkflow nach und nach weiter automatisiert werden kann und freuen uns, Ihnen weitere Anwendungsfelder in diesem Bereich vorzustellen.

Ähnliche Inhalte

Ähnliche Inhalte

Bild eines Doktors, der sich eine Prostata in mint Lesion anschaut.

Strukturierte Befundung und KI in der Radiologie: Effizienz und Qualität in der Prostatadiagnostik

Wie verändern strukturierte Befundung und Künstliche Intelligenz den radiologischen Alltag? Prof. Dr. Thorsten Persigehl von der Uniklinik Köln…

Dr. Madelaine Hettler, Ärztin an der Universitätsmedizin Mannheim, spricht über das Forschungsprojekt RACOON-SAGA zur Verbesserung der Sarkomdiagnostik.

Seltene Tumoren, große Ziele: Wie RACOON-SAGA Therapieentscheidungen verbessern will

Seltene Tumoren, große Herausforderung: Das Projekt RACOON-SAGA erforscht, wie Bildgebung und klinische Daten die prätherapeutische Charakterisierung…

Porträt von Univ.-Prof. Dr. Thorsten Persigehl, Experte für onkologische Bildgebung an der Uniklinik Köln

Strukturierte Befundung und Künstliche Intelligenz in der Prostatadiagnostik: Prof. Dr. Thorsten Persigehl im Interview

Wie sieht Radiologie aus, wenn strukturierte Befundung und Künstliche Intelligenz aufeinandertreffen? Ein Blick in die Praxis von Prof. Dr. Thorsten…