Dr. Laurent Chapuis beschreibt, wie die Softwarelösung mint Lesion™ die Vielzahl von Erst- und Folgeuntersuchungen für onkologische Patienten, die sie an der Clinique de la Source Lausanne durchführen, einfacher zu handhaben macht. Der "sehr gute Ansatz zur Tumorbeurteilung", den mint Lesion™ bietet, unterstützt die Kliniker bei der Behandlung der Patienten und konnte in ihren Workflow integriert werden, ohne diesen zu verändern.
Ähnliche Inhalte
Ähnliche Inhalte
FHIR im Gesundheitswesen: Das Potenzial der Interoperabilität
Im Gesundheitswesen ist die Interoperabilität ein wichtiger Wegbereiter: Interoperable Systeme ermöglichen die nahtlose Kommunikation von…
Optimierung der Bildgebung bei Glioblastomen: Verbesserung der MRT-Effizienz und -Qualität durch Deep Learning
Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die…
Universitätsklinikum Tübingen: Fortschritte in der Effizienz von MRT bei der Behandlung von Glioblastomen durch Deep Learning
Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen für Patient:innen mit Glioblastomen. Glioblastome, die…