Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

[Translate to German:]

KI-basierter Befundungsworkflow auf der Grundlage von Deep-Learning-Technologien

Wir alle werden von Nachrichten überschüttet, die das Potential von künstlicher Intelligenz gerade auch in der Radiologie thematisieren. Der Bedarf dafür ist unstrittig. Durch die Alterung der Bevölkerung, die steigende Anzahl von zu befundenden Bildern sowie die steigende Komplexität bei der Befundung muss die Effizienz und die notwendige Qualitätssicherung unbedingt angegangen werden.

Wir wissen, dass KI-Tools eine entscheidende Rolle im Befundungsworkflow des Radiologen spielen werden. Instrumente, die mit Wissensmodellierung und Machine Learning arbeiten, werden in der Rolle des intelligenten Assistenten die diagnostische Befundeffizienz und -qualität erhöhen.

„Bei Mint Medical verstehen wir Daten. Wir waren eines der ersten Unternehmen, die strukturierte Befundberichte und geführte Befundungen für die Therapieverlaufskontrolle entwickelt haben. Die dabei generierten strukturierten Daten sind heute Grundlage dafür, um mit Hilfe von Deep-Learning-Technologien, innerhalb und über den onkologischen Bereich hinaus, eine Vorreiterrolle einzunehmen“, so Dr. Matthias Baumhauer, Firmengründer und Geschäftsführer von Mint Medical.

Beim diesjährigen 104. Annual Meeting der RSNA in Chicago wird in mint Lesion erstmals der Prototyp eines Assistenten zu sehen sein, der eine Reihe von KI-basierten Technologien verwendet, u.a. eine Deep-Learning-Technologie, die auf einem modifizierten U-Net konvolutionellen neuronalen Netz basiert, welches mit Hunderttausenden Ground-Truth-Daten trainiert wurde.

Der Algorithmus ermöglicht nach einer manuellen Segmentierung der Läsionen in der Baseline, diese Läsionen in den Follow-up-Untersuchungen automatisch zu detektieren, und wird dadurch immer weiter trainiert und optimiert.

Wir glauben daran, dass der radiologische Befundungsworkflow nach und nach weiter automatisiert werden kann und freuen uns, Ihnen weitere Anwendungsfelder in diesem Bereich vorzustellen.

Ähnliche Inhalte

Ähnliche Inhalte

[Translate to German:]

Neueste TNM- und RADS-Klassifikation in mint Lesion

Mit einer Reihe an klinischen Befundvorlagen zur Tumordiagnostik bietet mint Lesion kontextspezifische Unterstützung in der Anwendung etablierter…

[Translate to German:]

Vorstellung der neuen mint Lesion 3.4 Release auf dem RSNA 2017

Mit mint Lesion 3.4 gelingt Ihnen die nachvollziehbare Beurteilung aller Auffälligkeiten in einem strukturierten Befundbericht leichter als je zuvor. …

[Translate to German:]

ESOI/EORTC Workshop in Barcelona: Teilnehmer bilden sich mit mint Lesion™ weiter

Der Autumn Workshop der European Society of Oncological Imaging (ESOI) und der European Organisation for Research and Treatment of Cancer (EORTC) ist…