Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

[Translate to German:]

HCC Befundungsprofil

Das hepatozelluläre Karzinom (HCC) erfordert eine umfassende Evaluation des Tumorstadiums, um eine präzise Prognose und klare Therapieempfehlungen (inkl. der Abwägung einer Lebertransplantation) zu sichern. Um dies zu gewährleisten, muss die Befundung sowohl auf radiologische als auch auf klinische Parameter basieren. Die neue Funktionalität von mint Lesion™ 3.0 zur Unterstützung des HCC Stagings ermöglicht hierzu die einfache Erfassung einer Vielzahl von Bildparametern (z. B. Größe, Anzahl, vaskuläre Invasion) und klinischen Daten (z. B. Child-Pugh-Score und Performance Status). Auf diesen Parameter basierend, ermittelt mint Lesion™ 3.0 automatisch den BCLC und das TNM Stadium und die Transplantationsempfehlungen entsprechend den Milan- oder UCSF-Kriterien.

Ähnliche Inhalte

Ähnliche Inhalte

Puzzleteile verbinden sich zu einem interoperablen System

FHIR im Gesundheitswesen: Das Potenzial der Interoperabilität

Im Gesundheitswesen ist die Interoperabilität ein wichtiger Wegbereiter: Interoperable Systeme ermöglichen die nahtlose Kommunikation von…

Drei wichtigen Sequenzen (FLAIR, T2, T1 mit Kontrastmittel) in der Glioblastom-Bewertung

Optimierung der Bildgebung bei Glioblastomen: Verbesserung der MRT-Effizienz und -Qualität durch Deep Learning

Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die…

Drei wichtigen Sequenzen (FLAIR, T2, T1 mit Kontrastmittel) in der Glioblastom-Bewertung

Universitätsklinikum Tübingen: Fortschritte in der Effizienz von MRT bei der Behandlung von Glioblastomen durch Deep Learning

Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen für Patient:innen mit Glioblastomen. Glioblastome, die…