Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische Bildanalyse, bei der Datenschutzbestimmungen ansonsten die Verwendung zentraler Datenspeicher verhindern würden. Trotz seiner vielversprechenden Möglichkeiten ist FL jedoch weitgehend auf simulierte Umgebungen beschränkt.

Diese Studie zielt darauf ab, die Lücke zwischen simulierter und realer FL-Forschung zu schließen, indem eine FL-Infrastruktur innerhalb des Deutschen Radiologischen Kooperationsnetzwerks (RACOON), ein Projekt des Netzwerk Universitätsmedizin (NUM) entwickelt wird.

Die Ergebnisse der Studie, bei der mint Lesion™ zur Verarbeitung radiologischer Bilder eingesetzt wird, zeigen, dass FL diese Methoden übertrifft, was seinen Wert für praktische Anwendungen unterstreicht. Die Studie bietet auch einen Leitfaden für die Einrichtung von FL-Initiativen und hebt die strategische Organisation und robuste Datenverwaltung hervor, um künftigen Forschern bei der Implementierung von FL in klinischen Umgebungen zu helfen.

Lesen Sie hier mehr über die Studie.

Ähnliche Inhalte

Ähnliche Inhalte

mint Lesion Screenshot mit PET-Auswertung, SUV und angepassten Response-Kriterien

Anpassbare Befundungsvorlagen für die Auswertung des Therapieansprechens

mint Lesion bietet anpassbare Befundungstemplates zur Auswertung des Therapieansprechens in der diagnostischen Radiologie und Forschung. Passen Sie…

Interdisziplinarität im Gesundheitswesen: Abstraktes Bild, das die Punkte in Gesundheitswesen-Workflows verbindet

Einblicke in das BZKF BORN-Projekt – Dr. Mandy Wahlbuhl-Becker im Interview

Das Bayerische Onkologische Radiologienetzwerk (BORN) optimiert die Krebsdiagnostik in Bayern durch standardisierte Bildgebung und strukturierte…

Zwei weibliche medizinische Forscherinnen unterhalten sich über ihr Forschungsprojekt

RACOON-RESCUE treibt die Versorgung von pädiatrischem Non-Hodgkin-Lymphom voran

Pädiatrisches Non-Hodgkin-Lymphom (NHL) ist der vierthäufigste Tumor bei Kindern und Jugendlichen, doch den radiologischen Methoden in diesem Bereich…