Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische Bildanalyse, bei der Datenschutzbestimmungen ansonsten die Verwendung zentraler Datenspeicher verhindern würden. Trotz seiner vielversprechenden Möglichkeiten ist FL jedoch weitgehend auf simulierte Umgebungen beschränkt.

Diese Studie zielt darauf ab, die Lücke zwischen simulierter und realer FL-Forschung zu schließen, indem eine FL-Infrastruktur innerhalb des Deutschen Radiologischen Kooperationsnetzwerks (RACOON), ein Projekt des Netzwerk Universitätsmedizin (NUM) entwickelt wird.

Die Ergebnisse der Studie, bei der mint Lesion™ zur Verarbeitung radiologischer Bilder eingesetzt wird, zeigen, dass FL diese Methoden übertrifft, was seinen Wert für praktische Anwendungen unterstreicht. Die Studie bietet auch einen Leitfaden für die Einrichtung von FL-Initiativen und hebt die strategische Organisation und robuste Datenverwaltung hervor, um künftigen Forschern bei der Implementierung von FL in klinischen Umgebungen zu helfen.

Lesen Sie hier mehr über die Studie.

Ähnliche Inhalte

Ähnliche Inhalte

Bild eines Doktors, der sich eine Prostata in mint Lesion anschaut.

Strukturierte Befundung und KI in der Radiologie: Effizienz und Qualität in der Prostatadiagnostik

Wie verändern strukturierte Befundung und Künstliche Intelligenz den radiologischen Alltag? Prof. Dr. Thorsten Persigehl von der Uniklinik Köln…

Dr. Madelaine Hettler, Ärztin an der Universitätsmedizin Mannheim, spricht über das Forschungsprojekt RACOON-SAGA zur Verbesserung der Sarkomdiagnostik.

Seltene Tumoren, große Ziele: Wie RACOON-SAGA Therapieentscheidungen verbessern will

Seltene Tumoren, große Herausforderung: Das Projekt RACOON-SAGA erforscht, wie Bildgebung und klinische Daten die prätherapeutische Charakterisierung…

Porträt von Univ.-Prof. Dr. Thorsten Persigehl, Experte für onkologische Bildgebung an der Uniklinik Köln

Strukturierte Befundung und Künstliche Intelligenz in der Prostatadiagnostik: Prof. Dr. Thorsten Persigehl im Interview

Wie sieht Radiologie aus, wenn strukturierte Befundung und Künstliche Intelligenz aufeinandertreffen? Ein Blick in die Praxis von Prof. Dr. Thorsten…