Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische Bildanalyse, bei der Datenschutzbestimmungen ansonsten die Verwendung zentraler Datenspeicher verhindern würden. Trotz seiner vielversprechenden Möglichkeiten ist FL jedoch weitgehend auf simulierte Umgebungen beschränkt.

Diese Studie zielt darauf ab, die Lücke zwischen simulierter und realer FL-Forschung zu schließen, indem eine FL-Infrastruktur innerhalb des Deutschen Radiologischen Kooperationsnetzwerks (RACOON), ein Projekt des Netzwerk Universitätsmedizin (NUM) entwickelt wird.

Die Ergebnisse der Studie, bei der mint Lesion™ zur Verarbeitung radiologischer Bilder eingesetzt wird, zeigen, dass FL diese Methoden übertrifft, was seinen Wert für praktische Anwendungen unterstreicht. Die Studie bietet auch einen Leitfaden für die Einrichtung von FL-Initiativen und hebt die strategische Organisation und robuste Datenverwaltung hervor, um künftigen Forschern bei der Implementierung von FL in klinischen Umgebungen zu helfen.

Lesen Sie hier mehr über die Studie.

Ähnliche Inhalte

Ähnliche Inhalte

Doktor schaut auf einen Bildschirm mit medizinischen Daten

Mensch-KI-Kollaboration in der Prostatakrebs-Diagnose

Da die Diagnose von Prostatakrebs zunehmend komplexer wird, entwickelt sich die Zusammenarbeit zwischen menschlicher Expertise und künstlicher…

mint Lesion Screenshot mit PET-Auswertung, SUV und angepassten Response-Kriterien

[Translate to German:] Anpassbare Befundungsvorlagen für die Auswertung des Therapieansprechens

mint Lesion bietet anpassbare Befundungstemplates zur Auswertung des Therapieansprechens in der diagnostischen Radiologie und Forschung. Passen Sie…

Interdisziplinarität im Gesundheitswesen

Einblicke in das BZKF BORN-Projekt – Dr. Mandy Wahlbuhl-Becker im Interview

Das Bayerische Onkologische Radiologienetzwerk (BORN) optimiert die Krebsdiagnostik in Bayern durch standardisierte Bildgebung und strukturierte…