Kategorien:

PET-Aufnahmen des Torsos mit relevanten falsch-positiven Befunden, markiert durch rote gestrichelte Kreise, und korrekt erkannten Läsionen (True Positives) in Grün

LMU Klinikum München: Künstliche Intelligenz für das TNM-Staging beim NSCLC – Wie gut sind KI-basierte Segmentierungen wirklich?

Die aktuelle Studie „Artificial intelligence for TNM staging in NSCLC – a critical appraisal of segmentation utility in [18F]FDG PET/CT“ untersucht…

Teilnehmende beim RECIST and Beyond Workshop in Köln während des Hands-on Trainings in mint Lesion zur strukturierten Tumorresponse-Bewertung.

Erfolgreicher Workshop „RECIST and Beyond“ in Köln: Präzise onkologische Bildgebung im Fokus

Wie lassen sich komplexe Tumorbefunde sicher, reproduzierbar und leitlinienkonform beurteilen?

RSNA 2025

30.11. bis 03.12.2025 Chicago, Illinois

Jahrestagung der Radiological Society of North America

Screenshot der mint-Lesion-Oberfläche mit RANO-2.0-Konfiguration, Tumorburden-Berechnung und strukturierten neuroonkologischen Bewertungstools.

Implementierung von RANO 2.0 für neuroonkologische klinische Studien in mint Lesion

Die Bewertung des Tumoransprechens in neuroonkologischen klinischen Studien erfordert besondere Sorgfalt hinsichtlich der Messprotokolle und der…

BioPharma Clinical Trials Nexus

18.11. bis 19.11.2025 Parsippany-Troy Hills, NJ

24th BioPharma Clinical Trials Nexus

Interview mit Prof. Dr. Timm Denecke über das RACOON-MARDER-Projekt zur KI-gestützten Früherkennung von Leberkrebs mittels MRT

„Das Unsichtbare sichtbar machen“: Wie RACOON-MARDER mit MRT und KI die Früherkennung von Leberkrebs verbessern möchte

Das hepatozelluläre Karzinom (HCC) ist ein potenziell tödlicher Tumor. Der entscheidende Faktor: der Zeitpunkt der Diagnose. Wird HCC früh erkannt,…

Bild eines Patienten, der einen MRT-Scan bekommt, um zu illustrieren, wie  die RACOON-Projekte in Deutschland, durch Bildgebung, strukturierte Befundung und KI gemeinsam die klinische Forschung verbessern.

RACOON – Bildgebung, Daten & Zusammenarbeit für bessere Entscheidungen

Die moderne Radiologie steht vor einer zentralen Frage: Wie lassen sich Bildgebung und klinische Daten so verbinden, dass Diagnosen präziser,…

Interview mit Prof. Dr. Timm Denecke über das RACOON-MARDER-Projekt zur KI-gestützten Früherkennung von Leberkrebs mittels MRT.

Früherkennung neu gedacht: Wie RACOON-MARDER Leberkrebs früher sichtbar machen will

Das hepatozelluläre Karzinom (HCC) wird oft erst spät entdeckt – mit gravierenden Folgen für Therapie und Überlebenschancen. Das Forschungsprojekt…

mint Lesions Research Suite: moderne Plattform für die bildbasierte Forschung für akademische Teams

mint Lesion Research Suite: Die flexible Forschungsplattform für skalierbare, mono- und multizentrische Bildgebungsstudien

mint Lesions Research Suite ist eine moderne Plattform für die bildbasierte Forschung, die akademische Teams dabei unterstützt, ihre Studien sowohl…