Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

Objective, reproducible, and trustworthy data in clinical trials with imaging endpoints

Dr. Anthony Tolcher, medical oncologist and CEO of NEXT Oncology, spoke to us about objectivity as one of the biggest challenges in clinical trials…

University Hospital Jena: Study evaluated response rate and safety in patients with HCC treated with DEB-TACE using 40-µm microspheres

Researchers at the University Hospital Jena analyzed the response rate and safety of superselective drug-eluting beads transarterial chemoembolization…

University Hospital Tübingen: Study examined correlation between 18f-fdg PET and CT texture parameters in metastatic melanoma patients

An exploratory study [1] conducted by researchers at University Hospital Tuebingen investigated whether CT texture analysis parameters correlate with…