Potenzial von longitudinalen Daten aus einzel- und multizentrischen klinischen Studien für die KI-Forschung

Prof. Dr. Hans-Christoph Becker von der Stanford University, ein langjähriger Nutzer von mint Lesion™, teilt in diesem Kurzinterview seine Erfahrungen im Umgang mit der Software. Er spricht über die Reaktion, die er erhielt, als er den mint-Befundbericht zum ersten Mal vorgestellt hat, darüber, wie Patienten von dem longitudinalen Überblick über ihre Krankheit profitieren und über seine Pläne, die strukturierten Daten für die KI-Forschung zu nutzen.

Ähnliche Inhalte

Ähnliche Inhalte

mint Lesion Screenshot mit HCC Diagnose laut APASL, AASLD, LI-RADS, LCA-NCC und EASL Leitlinien.

Multizentrische Studie: Vergleich diagnostischer Leitlinien für hepatozelluläres Karzinom

Neueste Fortschritte in MRT-Techniken und der Tumorbiologie haben zu aktualisierten Diagnoseleitlinien verschiedener Leberforschungsverbände für das…

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische…

Schematische Darstellung der Federated-Learning Studie und ihrer Dateninfastruktur

RACOON: Ein Leitfaden zur Überbrückung der Kluft zwischen simulierter und realer Forschung im Bereich des föderalen Lernens

Deep Learning (DL) ist ein wichtiger Bestandteil der radiologischen Bildanalyse geworden. Um diese Deep-Learning-Modelle zu trainieren, ist der Zugang…