Intelligente, kontext-orientierte Assistenzsysteme führen standardisiert durch die Befundung und liefern dabei alle relevanten Informationen zu Patient und Krankheit. Das Ergebnis: Die Radiologen rücken mehr in den Mittelpunkt der Behandlung und liefern vollständige, einheitliche und strukturierte Berichte. Lesen Sie mehr.
![[Translate to German:]](/fileadmin/_processed_/1/2/csm_James_please_DE-e1451921384777_b1d7f51e11.jpg)
James, please!
Ähnliche Inhalte
Ähnliche Inhalte

Das Bayerische Onkologische Radiologienetzwerk - Standardisierte Bildgebung für eine optimierte Krebsversorgung: Im Interview mit Dr. Mandy Wahlbuhl-Becker
Das Bayerische Onkologische Radiologienetzwerk (BORN) hat das Ziel, Patient:innen und medizinisches Fachpersonal in ganz Bayern zu unterstützen. Durch…

RACOON-RESCUE treibt die Versorgung von pädiatrischem Non-Hodgkin-Lymphom voran
Pädiatrisches Non-Hodgkin-Lymphom (NHL) ist der vierthäufigste Tumor bei Kindern und Jugendlichen, doch den radiologischen Methoden in diesem Bereich…

Universitätsklinikum Tübingen: Neuroonkologische Bildgebung mit Deep Learning Reconstruction (DLR)
Eine aktuelle Studie des Universitätsklinikums Tübingen untersuchte das Potenzial von mittels Deep Learning rekonstruierten (DLR) Bildern in der…