Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

Doktor schaut sich das Bild eines Uterus an

Das RACOON FADEN-Projekt widmet sich der Früherkennung von Adenomyose

Endometriose ist eine stark untererforschte Krankheit bei Frauen, die nun endlich durch das RACOON FADEN-Projekt mehr Aufmerksamkeit erhält.

In einem aufschlussreichen Interview sprechen Prof. Dr. Sylvia Mechsner (Charité Berlin) und Prof. Dr. Matthias May (Universitätsklinikum Erlangen) über das RACOON FADEN-Projekt, das sich auf die Früherkennung von Adenomyose, einer Form der Endometriose, konzentriert.

Dieses Projekt schließt eine bedeutende Lücke in der Diagnose und Behandlung von Frauen mit starken Menstruationsschmerzen. Mithilfe von MRT-Scans und künstlicher Intelligenz soll das Projekt frühe Anzeichen von Adenomyose identifizieren und das Verständnis der Morphologie eines gesunden Uterus vertiefen. Darüber hinaus betont das Interview die innovative Nutzung von strukturiertem Berichtswesen und der bestehenden RACOON-Infrastruktur, um die diagnostische Genauigkeit zu verbessern und die Forschung zu beschleunigen.

Lesen Sie das ganze Interview hier.

Ähnliche Inhalte

Ähnliche Inhalte

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische…

Schematische Darstellung der Federated-Learning Studie und ihrer Dateninfastruktur

RACOON: Ein Leitfaden zur Überbrückung der Kluft zwischen simulierter und realer Forschung im Bereich des föderalen Lernens

Deep Learning (DL) ist ein wichtiger Bestandteil der radiologischen Bildanalyse geworden. Um diese Deep-Learning-Modelle zu trainieren, ist der Zugang…

Ärzte vor einem Computer; Bild in der medizinischen Bildgebungssoftware mint Lesion

BZKF BORN Roll-Out Schulungen Gehen Weiter

Unser Experte Steffen Rupp besuchte kürzlich die Technische Universität München, um die vor Ort stattfindenden BZKF BORN Roll-Out Trainings…