Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

Pediatric cancer patient on a hospital bed receiving treatment

Advancing Childhood Cancer Research by Providing the Path to Structured, Mineable, AI-ready Data

Modern technology advancements, specifically in the area of medical imaging, have substantially improved the evaluation of therapy response and the…

Participants at a BZKF event during a lecture, including the Bavarian Minister of State for Science and the Arts, Markus Blume

Launch of the Bavarian Oncology Radiology Network (BORN) Project

1 minute(s)

Improving the diagnosis and treatment of cancer patients by harnessing the potential of digitalization and standardization is the ultimate ambition of…

Radiological Cooperative Network (RACOON)

RACOON - What's Next?

Since mid-2020, mint Lesion™ has been successfully used within the Radiological Cooperative Network (RACOON), in the University Medicine Network which…