The Knowledge Hub for Medical Imaging Professionals: Transforming Radiology with Structured Reporting, Data-Driven Approaches and Multicentric Research

Access breakthrough research, innovative case studies and collaborative projects advancing radiology worldwide. Dive into our activities and product updates, and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

mint Lesion screenshot with HCC diagnosis according to APASL, AASLD, LI-RADS, KLCA-NCC, and EASL guidelines

Multicentric Study: Comparison of Diagnostic Guidelines for Hepatocellular Carcinoma

Recent advancements in MRI techniques and tumor biology have led to updated hepatocellular carcinoma (HCC) diagnostic guidelines from various liver…

Radiologist using for medical image analysis

Advancing Real-World Federated Learning in Radiology

Federated Learning (FL) enables collaborative model training without data centralization – a crucial aspect for radiological image analysis where…

Schematic visualization of the federated learning study and its data infrastructure

RACOON: A Guide to Bridging the Gap Between Simulated and Real-World Federated Learning Research

Deep learning (DL) has become an important part of radiological image analysis. To train these deep-learning models, access to large and diverse…