Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

mint PI-RADS V2 report as the standard for communication with urologists - Interview with PD Dr. Röthke

Since the beginning of 2017, all PI-RADS v2 reads are exclusively performed with mint Lesion™ by PD Dr. Matthias Röthke, Chief Medical Officer at…

Assessment time halved: Importance of a good tumor response assessment tool in clinical site reads

The Clinical Research Imaging Core (CRIC) of the University of Wisconsin Carbone Cancer Center (UWCCC) recently published a poster at the AACI CRI…

Study - free text reporting vs. mint Lesion in clinical routine

Free text reporting in the tumor response assessment of radiologic imaging data is common in clinical routine, whereas in clinical trials standardized…