The Knowledge Hub for Medical Imaging Professionals: Transforming Radiology with Structured Reporting, Data-Driven Approaches and Multicentric Research

Access breakthrough research, innovative case studies and collaborative projects advancing radiology worldwide. Dive into our activities and product updates, and learn who we are as a company and as a team.

mint Lesion usage during a clinical trial read, featuring the TGRM export tool.

Bridging the Gap Between RECIST and Survival: Why the FDA’s Analysis of the g Value is a Game-Changer

For decades, oncology trials have relied on RECIST 1.1 to evaluate drug efficacy. However, these categorical "snapshot" evaluations do not always correlate perfectly with Overall Survival (OS) or Progression-Free Survival (PFS). A landmark FDA retrospective analysis of 10,495 patients across 22 randomized NSCLC clinical trials¹ is now suggesting a more precise kinetic approach that better correlates with survival: Tumor Growth Rate Modeling (TGRM) g-values.

The Power of the g Value

The FDA’s research focused on the growth rate constant (g), a volumetric measurement derived from mathematical models. The study’s most significant finding was that the g value is inversely associated with survival. Patients with lower g values—indicating slower tumor growth—showed significantly higher median OS and longer median PFS across all lines of therapy.

Key Insights from the FDA Publication

  • Early Efficacy Signals: The g value can characterize the potential clinical activity of an agent before time-to-event endpoints like OS are reached.
  • Therapy-Specific Kinetics: The analysis revealed that patients on targeted therapies (e.g., ALK or EGFR inhibitors) had the lowest g values compared to those on immunotherapy or chemotherapy.
  • Predictive for Cytostatic Agents: TGRM is particularly useful for therapies with primarily cytostatic effects, where traditional response rates (ORR) might fail to capture the drug's true impact on growth inhibition.

Implementation in mint Lesion

mint Lesion allows users to move beyond the broad binning of RECIST (like "Stable Disease") by quantifying these kinetics concurrently with standard assessments. By utilizing the same mathematical framework cited by the FDA, mint Lesion enables the concurrent extraction of g values, which exploratory research suggests may help characterize the potential antitumor activity of an agent early in the development process.

To understand how mint Lesion translates these mathematical models into a configurable clinical workflow, read our companion piece on the practical implementation of TGRM.

For a deeper dive into how TGRM overcomes the limitations of traditional response criteria to provide more predictive efficacy signals, download our full TGRM white paper.

 

1Justin N Malinou, Jiaxin Fan, Joyce Cheng, Yutao Gong, Yuan-Li Shen, Erin Larkins, An FDA analysis of the association of tumor growth rate, overall survival and progression-free survival in patients with metastatic NSCLCThe Oncologist, 2026.

Related Resources

Related Resources

Interview with Prof. Timm Denecke about the RACOON-MARDER project and AI-powered early detection of liver cancer using MRI

“Making the Invisible Visible”: How RACOON-MARDER Aims to Improve Early Detection of Liver Cancer Using MRI and AI

Hepatocellular carcinoma (HCC) is a potentially deadly tumor. The decisive factor is the timing of diagnosis: if HCC is detected early, there is a…

Image of a patient getting an MRI scan, signifying how RACOON projects in Germany show how imaging, structured reporting, and AI jointly advance clinical research.

RACOON – Imaging, Data & Collaboration for Better Decisions

Modern radiology faces a central question: how can imaging and clinical data be combined in a way that leads to more precise diagnoses,…

Interview with Prof. Timm Denecke about the RACOON-MARDER project and AI-powered early detection of liver cancer using MRI

Rethinking Early Detection: How RACOON-MARDER Aims to Spot Liver Cancer Sooner

Hepatocellular carcinoma (HCC) is often diagnosed too late, limiting treatment options and survival. The RACOON-MARDER project aims to change that. By…