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Quantifying Response to Treatment 
with Medical Imaging

Historically, clinical trials have relied on clinical outcomes to 
determine if a treatment is safe and effective. The reputed 
gold standard measure of effi cacy is Overall Survival (OS) 
defi ned as time from start of therapy to time of death. OS, 
however, typically requires large datasets and extensive long-
term follow up which can be both time and resource intensi-
ve. The addition of other therapies or interventions following 
the end of treatment for the therapy under investigation can 
further confound OS outcomes.

In time, as medical imaging (e.g., Computed Tomography 
(CT), Magnetic Resonance Imaging (MRI), Positron Emission 
Tomography (PET), etc.) improved, evidence grew that using 
tumor shrinkage as observed on imaging could provide ob-
jective evidence of effi cacy. For nearly three decades, evi-
dence of tumor shrinkage evaluated on medical imaging has 
supported the approval of new therapies in clinical trial eva-
luations using imaging as a surrogate endpoint. Compared to 
OS as a primary endpoint, longitudinal evaluation of serially 
acquired scans in which response to therapy can be mea-
sured at time intervals (e.g., weeks) offers the advantage of 
predicting clinical benefi t (e.g., effi cacy evidence) in a shor-
ter period of time while more directly evaluating the specifi c 
treatment under investigation. The advantage of imaging-
based endpoints is the possibility of bringing new effective 
therapies to patients in need faster.

To date, imaging evaluations in oncology clinical trials utilize 
response criteria guidelines as a standardized tool to evalua-
te the effect of therapy on a given disease indication. These 
published guidelines have specifi cations based on disease 
indication (e.g., solid tumors, primary brain metastases, lym-
phoma, etc.) with the “rules” of the criteria governed by the 
typical presentation of the disease type, industry standards, 
best practices for reproducibility, and quantitative statistical 
analysis of relevant datasets that inform the basis for such 
guidelines. Prominent response criteria examples are RECIST 
1.11 for solid tumors, Lugano2 for lymphoma as well as RANO3
for primary brain tumors, amongst many others.

In these criteria, response is evaluated using radiological 
imaging acquired as repeated sequential imaging studies, 
referred to as timepoints. The assessment of tumor burden 
change (disease-specifi c lesions and pathological abnor-
malities related to cancer) across these longitudinal imaging 
timepoints determine a patient’s response to therapy. A hall-
mark of standardized response criteria is the provision of a 
common and transparent language to accompany clinical tri-
als with image-based endpoints in communicating results of 
individual patients and across groups of patients as well as 
across comparative trials.



Limitations of Current Imaging-Based 
Response Evaluation Methods

Response criteria guidelines, such as RECIST 1.1, have been 
utilized and served their purpose across a multitude of trials 
and thousands of patients in providing a standardized, repro-
ducible means to evaluate anti-cancer treatment effects and 
allowing for comparison of these outcomes with historical tri-
als and approved therapies. They come, however, with certain 
limitations that warrant consideration and necessitate the re-
evaluation of how to objectively measure treatment efficacy. 

Standardized response criteria evaluations on imaging are 
based upon broad categorization and binning of response 
(e.g., Stable Disease captures both regression and increa-
se in disease burden) which do not always account well for 
‘mixed response’ or tumor heterogeneity. These categorical 
assessments are then converted to binary categories such 
as Responders (Complete Response (CR) and Partial Res-
ponse (PR)) and Non-responders (Stable Disease (SD) and 
(Progressive Disease (PD)) or to an implied Clinical Benefit 
(CR + PR + SD vs PD) in endpoint trial cohort analysis. More 
recent response criteria have narrowed the response catego-
ries further (e.g., Major Response - between a PR and CR; 
Minor Response between a PR and SD) which may provide 
further refinement in correlating drug effect to benefit. 

Response criteria rely on a snapshot evaluation of tumor size 
at predefined timepoints during the course of treatment. That 
is, imaging-based endpoints measuring time, such as Time 
to Progression and Duration of Response, are constrained by 
the rule that the frequency of imaging must be the same ac-
ross all patients in a trial including the treatment arms (com-
parator and treatment under study). If the intervals are not the 
same, bias in the treatment effect may be introduced. 

Refer to Delgado et al.4 for a comprehensive summary overview of 
endpoints in oncology clinical trials with their relative benefits and 
drawbacks.

Many response criteria utilize diameter-based measure-
ments, but lesions are not always spherical, and diameters 
might fail to capture changes of lesion size adequately (see 
figure 1). Furthermore, diameter measurements do not provi-
de information on density, viable tumor, necrosis, or textural 
information which can offer important correlating information 
for understanding efficacy in therapeutic evaluations. 
 
For further reading on the importance of RECIST and other respon-
se criteria as well as known limitations see Fojo et al.5, Sharma et 
al.6, Aykan NF, et al.7., and Fournier L, et al.8

Figure 1: Longest diameter measu-
rements might fail to capture volu-
metric changes of lesions during 
anti-cancer treatment:

While the measurement of the lon-
gest diameter shows a increase of 
size in the non-spherical shaped le-
sion on the left at the last timepoint, 
volumetric measurements indicate a 
further decrease. Diameter and volu-
metric measurements correlate bet-
ter in spherical lesions as depicted in 
the right tiles

While change in tumor size on imaging does provide a measu-
re of therapy-effect with anti-cancer agents, very often early 
phase evaluations are extensively based on a smaller pati-
ent population who in many cases may be highly pretreated 
with multiple lines of prior therapy and may have developed 
treatment resistance. Early efficacy signals of warding off 
progression in early phase trials may be demonstrated with 
Stable Disease as a primary indication of success on balance 
with a smaller subset of short-term Partial Responders, and 
in exceptional cases, Complete Response. Sub-group ana-

lysis may be possible and reveal some further information 
on differences in responders vs. progressors such as with 
regard to mutation status. However, in the absence of an en-
hanced means to measure what these differences indicate 
for predicting later phase trial outcomes, findings may be li-
mited. A decision to proceed to later phase trials may thus be 
based on inadequate information that is not entirely predictive 
of success in later stage study efficacy-focused endpoints 
that rely on more substantial and refined patient populations. 



Clinical trial endpoints measuring Objective Response Rate 
(ORR) with evidence of a decrease in tumor burden and 
Progression Free Survival (PFS) with evidence of delay in 
disease progression, based on imaging-based evaluations, 
can be clinically meaningful to represent benefit to patients. 
A key aspect of response evaluation on imaging is that it is 
measuring just that – response and/or progression with the 
essential principle that the trajectory of cancer is to grow. In 
essence, the measurement of response and progression is 
providing evidence of therapy effect. As such, therapy effect 
is not a direct measure of extending survival or even quality of 
life in survival - it is a correlation through a surrogate method 
of how effectively cancer growth can be slowed or stopped. 
As example, a therapy that demonstrates a high ORR does 
not necessarily indicate that a therapy will have meaningful 
impact in extending survival. Rather, a significant ORR may 
demonstrate that some cancer cells may be eliminated while 
others may be temporarily slowed in growth (e.g., treatment 
resistant fraction).

Yeh et al.9 describes the crux of the current limitations in 
clinical trials with image-based endpoints by examining the 
background of the approval of Gemcitabine10 as first-line 
therapy for standard of care for advanced pancreatic duc-
tal adenocarcinoma in 1997 and the subsequent 20 years of 
research investigating how to further extend the median OS. 

A Refinement of Perspective

Quantitative measurement of drug-effect with medical imaging as a surrogate end-
point remains essential in evaluating treatment efficacy. The refinement to the per-
spective that may be needed is thinking differently - rather than only categorizing 
drug effect with response and progression cut-offs, measuring it in a way that leads 
to more insight on predicting the patient benefit with the same original time advan-
tage gained with the introduction of medical imaging as a surrogate endpoint - the 
ability to predict clinical benefit and improved OS in a shorter period of time.

To address this need, we need to ask the following questions:

That is, nearly 70 trials were conducted with over 16,000 pa-
tients in a span of 20 years to determine two treatment op-
tions with adding a second agent along with Gemcitabine to 
further improve median OS.

In a 2020 review of “Clinical Trial Evidence Supporting US 
Food and Drug Administrative Approval of Novel Cancer The-
rapies Between 2000 and 2016“11, the authors report these 
novel therapies had considerable associated tumor response, 
but that median OS was extended by about two months. A 
2023 report of “The evidence base of US Food and Drug Ad-
ministration approvals of novel cancer therapies from 2000 to 
2020“12 details similar findings while indicating some further 
gain in median OS between 2016 to 2020 of 5.65 months 
with remarks of cautionary interpretation of this improvement. 

Merino et al.13 succinctly state the current dichotomy between 
efficacy endpoints measuring tumor-burden and the gold 
standard of OS in oncology drug approvals in the 2023 pu-
blication, “Irreconcilable Differences: The Divorce Between 
Response Rates, Progression-Free Survival, and Overall Sur-
vival“ – that ORR and PFS are not reliably demonstrating evi-
dence as surrogate endpoints for OS.

• Are the methods currently used to measure efficacy in anti-cancer 
treatment with measurement of tumor burden on medical imaging an 
optimal tool (e.g., response criteria guidelines, diameter-based mea-
surements)?

• Are there impediments in the way we measure efficacy that are preven-
ting innovative improvements in identifying and ensuring therapies are 
effective?

• Can earlier phase trials and smaller datasets be evaluated differently 
to provide better predictive means of efficacy prior to the conduct of 
larger, later phase studies (e.g., informing go/no go decisions earlier 
and with fewer patients)?

• As a therapy can bring exceptional benefit in a small percentage of pati-
ents but not all (e.g., there are exceptionally effective new drugs but the 
benefit is limited to a small fraction of the patient populations), are there 
improved ways to better predict which patients are likely to see benefit?

• Can a different approach, providing more information, be done concur-
rently with the established standard of response criteria evaluations of 
longitudinal imaging (e.g., validating the approach while continuing to 
measure efficacy by the established means.)?

• If a different, “better” approach is taken, what certainty is there that it 
will not have similar limitations than those already employed in current 
efficacy evaluations?

For someone facing a cancer diagnosis, recurrence, or treatment resistance, the priority need is evidence of which therapy, at which time, leads to 
survival as well as the ability to maintain a meaningful quality of life.



Stein et al.,17, 20 however successfully demonstrated an approach with relatively simple computational modeling that can utilize 
measurement of tumor quantity on imaging with time as a variable. Wilkerson et al.21 and Maitland et al.22 extended their ap-
proach by using a combination of four (4) tumor growth/decay models based on exponential functions, which is the referenced 
approach here. 

While there is potential for this methodology to provide significant value in cancer therapeutic research, the use of this 
approach as a validated and accepted imaging biomarker in clinical trials is still required. That is, there remains extensive 
research and validation efforts to be done such that this methodology might supplement the established clinical trial end-
points currently employed with imaging.

The proposed Tumor Growth Rate Models utilize mathematical expressions to measure changes in tumor burden as measured 
on imaging evaluations during a given treatment providing two key values:

One alternative approach that follows a 
different way of thinking while utilizing 
the same standard of longitudinal eva-
luation of tumor burden on imaging may 
provide a refinement that enables ear-
lier, more informative efficacy signals 
with smaller datasets – Tumor Growth 
Rate Modeling (TGRM).

The use of computational modeling14, 

15, 16, 17, 18, 19 to evaluate tumor quanti-
ty changes across timepoints is not an 
entirely new and different approach. 
However, these methodologies, while 
providing essential and valuable infor-
mation, have not shown notable impro-
vement over imaging-based endpoints 
with response criteria evaluations and 
have primarily focused on different sin-
gle tumor growth models.

Tumor Growth Rate Modeling Methodology

This approach is based on the concept that the tumor burden 
changes over the course of treatment are based on two in-
dependent processes that occur concurrently: Firstly, decay 
of tumor cells sensitive to treatment and secondly, growth 
of cancer cells that show treatment resistance. Depending 
on the fraction of the tumor cells (in)sensitive to treatment, 
one of three growth patterns can be observed in longitudinal 
imaging: Steady increase of tumor size, steady decrease of 
tumor size, or a decrease followed by an increase. For both 
decay and increase, an exponential growth pattern is assu-
med, leading to the four equations described in detail in the 
table below (there are two different equations for the decay-
regrowth pattern).

As tumor growth patterns may vary across individual patients, 
and in particular with certain therapeutic mechanisms of  
action (e.g., immunotherapy induced pseudo-progression), 

not all patients in a clinical trial evaluation will have a fit to 
one of the four equations. However, the models referenced 
here demonstrate a majority of patients with a fit using this 
approach, suggesting this framework is a feasible method in 
clinical trial cohorts to evaluate efficacy effect (e.g., approxi-
mately 10% of subjects with adequate imaging evaluations 
and measurements had no fit22).

Importantly, time is a factor in these equations, and this re-
moves the constraint of imaging intervals at fixed timepoints 
(e.g., the limitation of response evaluation where the time bet-
ween evaluations must be the same across treatment arms) 
and thereby also provides precedence for use with real-world 
data.

the rate of growth/regrowth g and the rate of regression/decay d



References of note for this TGRM methodology

In the 2008 publication, Stein et al.20 demonstrated a method to utilize tumor measurement data in clinical trials 
to predict survival with a two-phase equation estimating the simultaneous rates of tumor growth (rate constant g) 
and regression (rate constant d). Modeling against serial levels of prostate-specifi c antigen (PSA), they demons-
trated that survival was strongly correlated with the growth rate (g) whereas the rate of regression (d) did not 
predict survival. The growth rate constant g, as a validated surrogate for survival with applicability in other tumor 
types, was postulated for applicability during drug development to evaluate therapy effectiveness in extending 
survival.

In 2017, Wilkerson21 et al. used existing clinical data from patients with metastatic castration-resistant prostate 
cancer of eight randomized clinical trials and applied mathematical models with PSA levels as the tumor 
quantity in order to estimate rates of growth and regression of the tumor burden over time. Using a simulated 
sample size analysis, with the g value as primary endpoint to compare two different treatments, they found small 
sample sizes suffi cient to achieve 80% power. These fi ndings indicate that growth rate modelling could help to 
reduce the number of patients that need to be enrolled in clinical trials.

In 2020, Maitland et al.22 presented data of almost 1000 colorectal cancer patients from two phase III trials: All 
metastatic lesions in this cohort were measured on CT retrospectively, and in parallel, tumor regression (d) and 
growth (g) rates were estimated for each patient‘s uni-dimensional and volumetric measurements. This analysis 
demonstrated that volumetric measurements with tumor growth rate data holds the potential to improve evaluati-
on of treatment in colorectal cancer as fewer patients per trial may be required to detect a treatment effect.

Yeh et al.9 in 2023 retrospectively applied a tumor growth model in over 3000 patients with stage III and IV pan-
creatic ductal adenocarcinoma to evaluate the rate of growth based on serial imaging measurements and CA-19-
9 values. These datasets were obtained from patients enrolled in six randomized controlled trials, two single arm 
trials and two real world datasets. This rich dataset demonstrated that g is inversely associated with Overall Survi-
val and importantly, can distinguish between therapies within the same trial as well as across different trials. They 
also demonstrated that the differences in the growth rate of different metastatic lesion sites can be characterized 
by g. Examples of how g can be used to benchmark phase II and III clinical data with virtual control reference arms 
are provided as well as further pathways to expedite approval of new effective therapies.

Implementation of this TGRM Methodology

Generally, the behavior of a tumor can 
be described as an interplay of tumor 
growth and tumor decay. In the propo-
sed method, there are four (4) possib-
le fi t models (mathematical equations) 
that can be used alone or in combinati-
on: GD, GX, DX and GDϕ  (Note: There 
are other mathematical models in tu-
mor dynamics23). The estimates values 
g (rate of tumor growth) and d (rate of 
tumor decay) are determined based on 
curve fi tting according to the four (4) 
equations. Which equation fi ts the data 
best is determined based on further va-
lues which evaluate the goodness of 
the fi t. 

The equations

The estimation of the growth rate con-
stant becomes more robust the more 
data points are available. The minimum 
number of timepoints required per mo-
del is given by the number of parame-
ters included in each model.

A given patient case may have a fi t to 
a certain model determined at a point 
in time (e.g., based on the number of 
timepoints). It is suggested to use a mi-
nimum number of three (3) timepoints 
for each case - baseline plus two (2) 
follow-up timepoints. One fi t model, 
GDϕ, is only applicable for four (4) total 
timepoints and, in addition to the g and 
d estimates, a third parameter, ϕ, the 
fraction of tumor showing regression, is 
calculated. 

The timepoints Radiological evaluations

The same methodologies currently 
utilized in serial assessment of longi-
tudinally acquired patient images can 
be applied to tumor growth rate mo-
dels. That is, the quantitative measu-
rement of tumor burden at baseline as 
performed with response evaluations 
such as RECIST 1.1 and measurement 
of the same baseline tumor burden at 
follow-up imaging. The model can be 
used with uni-dimensional, bi-dimen-
sional, and volumetric measurements, 
with volumetrics providing some addi-
tional benefi t with regard to sample 
size, for example.22



In a clinical trial, a best fit is evaluated for each patient according to one of these four (4) models. The best fit determines 
which g and d values (i.e., the estimates) are considered for that patient. Not all patients will have a fit according to these four 
(4) models and therefore some patients will be excluded from the analysis. This may include datasets with fewer than the mi-
nimum number of timepoints (e.g., at least three (3) for most models), cases with lesions evaluated as Not Evaluable (NE), or 
tumor growth behavior which cannot be fitted by any of the four models (e.g., regression following a progression). While a Best 
Response and/or Timepoint of Progression can still be derived based on response criteria evaluations of the same dataset, 
modeling with g/d values is approached differently, and rules must be defined for either excluding lesions that become NE 
(e.g., excluding entirely from the dataset and basing on the remaining measured values, or excluding the patient as a non-fit). 
This approach also provides an opportunity to utilize historical control arms or pre-treatment g/d values as a comparator to 
on-study outcomes, and further substantiate treatment efficacy. 

The dataset

Biexponential growth and 
regression model.

g only d only g, d, and ϕg and d

Three (3) evaluations 
(e.g., baseline plus two (2) 
follow-ups) 

f(t) = egt + e−dt − 1
g > 0, d > 0

f(t) = egt 

g > 0
f(t) = e−dt 

d > 0
f(t) = (1 − ϕ)egt + ϕe−dt

g > 0, d > 0, 0 < ϕ < 1

f(t) – Tumor quantity at time t in days relative to initial tumor quantity 
t – time in days after treatment start 
d – rate of tumor regression (decay) 
g – rate of tumor growth (or regrowth) 
ϕ – fraction of tumor showing regression (only for GDϕ model) 

aBaseline plus one (1) follow-up timepoint may be considered for inclusion in certain evaluations where the first follow-up is also consistent with progression by 
established response criteria. However, generally patients with less than three (3) evaluable timepoints are excluded from TGRM.

Three (3)a evaluations 
(e.g., baseline plus two (2) 
follow-ups)

Three (3)  evaluations 
(e.g., baseline plus two (2) 
follow-ups) 

Four (4) evaluations 
(e.g., baseline plus three 
(3) follow-ups)

Exponential growth or 
re-growth where the tumor 
burden is only increasing. 

d in this model is removed.

GDFit Model

Description

Equation

Values reported

Minimum Imaging 
Evaluation  
requirements

Where

GX

Exponential decay or 
regression where the tumor 
burden is only decreasing.

g in this model is removed.

DX

Tumor growth and decay 
but with an additional value 
ϕ that estimates the fraction 
of tumor that undergoes 
cell death due to treatment.

GDϕ
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Further remarks on fit model selection:

• In reference publications9, 21, 22 with TGRM, a p-value threshold is pre-defined to determine if a fit is considered as good enough for further 
consideration. (For the fitting parameters, the p-value indicates the probability of observing a result equal or more extreme than was actually 
observed (assuming the null hypothesis that the parameter has no effect on the underlying model is true. Convention is that p-values below 
0.1 or 0.05 indicate a good fit.)

• The dataset is evaluated and considered as relevant if all estimates of g, d and ϕ have a p-value < 0.1 (or the defined p-value threshold).

• More than one fit model may be selected based on the p-values. In such cases, the fit model with the lowest Akaike Information Criterion (AIC) 
value is considered as the best fitted model. AIC estimates the quality of each model, relative to each of the other models. (AIC is used to 
compare the goodness of the fit between different models - the fit model with lower AIC is considered to fit better.)

• A dataset will have “No Fit” when no model predicts tumor burden, thus no model shows a fit good enough implying that the p-values of 
the estimates fulfill the p-value threshold. 

• When the sample size is small, there is the probability that the AIC will tend to select models with many parameters (e.g., preference for 
GDϕ). Corrected AIC (AICc) can be used as a correction for a small sample size (as the number of imaging evaluations (timepoints in this 
case) goes towards infinity, AICc converges to AIC.)

•  See also: tumgr - Tumor Growth Rate Analysis24



Potential Benefits of Using this  
TGRM Methodology

One significant advantage of the TGRM methodology is that time is a variable. This characteristic addresses a current chal-
lenge in clinical trial study design, namely the constraint of fixed imaging intervals. By allowing flexibility to utilize diameter 
or volumetric measurements, TGRM enables comparison to historical trial data in which volumetric measurements may not 
have been available. Importantly, TGRM can be conducted concurrently with the conventional response criteria evaluations as 
utilized in the current clinical trial methodology while this approach is further validated.

Other potential benefits include:

• Providing a refinement to response assessment with a 
cost effective, surrogate endpoint that takes a different 
approach and with the potential for smaller patient 
sample sizes and earlier detection of efficacy that cor-
relates with OS and PFS.

• Informing decision making on all phases of oncology 
drug development with particular opportunity in early 
phase efficacy signals for go/no go decisions.

• Informing dose-optimization based on refined informa-
tion related to the rate of growth and regression over 
time.

• Evaluating tumor growth rate for pre-treatment imaging 
compared to therapeutic intervention, which may provi-
de additional efficacy signals.

• Single-arm trial-benchmarking with historical control 
arms in clinical trials exploring a new therapy.



Mint Medical Provision of this TGRM 
Methodology in mint Lesion™ 

Mint Medical’s software mint Lesion™ is 
a prominent medical imaging evaluation 
tool in oncology, widely used in clinical 
trial assessments. Trusted worldwide 
by leading healthcare institutions, con-
tract research organizations (CROs), 
and pharmaceutical/biotech companies, 
mint Lesion™ ensures top-tier radiology 
assessments for clinical research purpo-
ses. 

Emphasizing the importance of com-
prehensive data utilization, Mint Medical 
aids research endeavors through this 
novel innovative TGRM methodology 
to drive faster development of effective 
therapies for patients in need.

• TGRM can be implemented with or without response as-
sessment, and data can be extracted concurrently. Fur-
thermore, previously conducted trials in mint Lesion™ can 
export TGRM at a subsequent time even after the trial has 
concluded.

• On-going validation of this methodology is facilitated as 
TGRM is an export of data and does not interfere with the 
endpoint analysis of the on-going clinical trial.

• Response assessment evaluations can be conducted with 
any measurement parameter such as diameter-based eva-
luations or volumetrics. Volumetric evaluation of lesions 
will derive the correct response according to published gui-
delines for all criteria integrated in mint Lesion™, e.g., for 
RECIST 1.1 the response based on Sum of Diameters for    
Target Lesions, as well as Non-Target and New Lesion com-
partments responses, and Overall Response.

• TGRM may be used to assess on-study evaluations as well 
as with pretreatment images together with on-study imaging.

• The export can be configured in many ways such as:

• Only Target Lesions or including Non-Target and New Le-
sions (if measured)

• Only specified lesion locations (e.g., lung lesions, or liver 
and lymph nodes only)

• Using a long-axis diameter for all lesions or using long-
axis for non-nodal and short-axis for nodal sites (for dia-
meter-based evaluations using TGRM)

• Only patient cases with three (3) or more timepoints (or 
another defined minimum)

• Only certain fit models such as:

• Including GD, GX, DX and excluding GDϕ

• Including GD, GX, DX and GDϕ

• Further export configurations, such as definition of p-value 
threshold, choice of AIC or AICc as well as other variable 
configurations (e.g., Too Small to Measure values and hand-
ling of NE lesions), can be defined.

• Multiple exports can be generated for primary analysis eva-
luation as well as additional sub-analysis with variable inclu-
sion/exclusion parameter configurations applied.

Accessible TGRM Data Extracted from Any Image Evaluation

The implementation of this TGRM methodology in mint Lesion™ enables the reporting of clinical trial response assessments 
concurrently with a highly configurable data export for estimates of growth rates, g and decay rates, d. 



Standardized Response Criteria Read Templates 

With more than 30 reading templates, which cover oncologi-
cal screening and staging, as well as tumor response evalua-
tion, mint Lesion™  can be employed in various oncology the-
rapeutic programs. Although response criteria templates are 

Commonly used response criteria available in mint Lesion™

mint to mint Data Exchange 

Data Liquidity – All Data in All Formats 

As Mint Medical strives to support the goal of data inter-ope-
rability and data liquidity in healthcare, mint Lesion™ data 
can be directly exchanged between mint Lesion™ instances. 
Imaging evaluations in a clinical trial conducted in one mint 
Lesion™ instance can be exported and imported into another 
mint Lesion™ instance. 

Data Liquidity is vital in the context of clinical trials and 
ensures the continuous forward momentum of thera-
peutic discovery and development, research, and deli-
very of new effective treatments to patients. mint Lesi-
on™ assures the uniformity of data by generating reliable, 

high-quality data – reported in a consistent, compliant, and 
structured format. mint Lesion™ data is Connected, Mobile, 
Comprehensive, and Minable - enabling real-time data ana-
lytics, in-depth investigation, AI, and machine learning. 

The comprehensive Export Clone includes the evaluated 
data, annotated images, and trial specifi c criteria enabling 
imaging CROs and Research Groups, for example, to direct-
ly export completed trials with all images and annotations 
de-identifi ed of personnel/reader assignees directly to the 
Sponsor for import into another mint Lesion™ instance. The 
imported trial data can be further modeled and interrogated. 
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RECIST 1.1

PERCIST

WHO

Choi

mRECIST HCC

PCWG3 

mRECIST-Mesothelioma

Solid Tumors

iRECIST

irRECIST

imRECIST

irRC

Immunotherapy

RANO HGG 

RANO LGG

RANO-BM

RAPNO-pLGG 

RAPNO-pHGG 

RAPNO-pDIPG

Neuro-Oncology

Lugano

Cheson

LYRIC

iwCLL

RECIL

Lymphoma and CLL

standardized according to the related publication guideline, 
they are modifi able with mint Lesion™ to support modifi ed 
criteria based on therapy mechanism of action, indication, or 
protocol design.
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