Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Radiologist using for medical image analysis

Advancing Real-World Federated Learning in Radiology

Federated Learning (FL) enables collaborative model training without data centralization – a crucial aspect for radiological image analysis where privacy regulations would otherwise hinder the use of centralized data lakes. Despite its promise, however, FL has largely been confined to simulated environments.

This study aims to bridge the gap between simulated and real-world FL research by developing an FL infrastructure within the German Radiological Cooperative Network (RACOON), a project by the Netzwerk Universitätsmedizin (NUM).

Using mint Lesion™ to process radiological images, the study’s results show FL outperforms these methods, underscoring its value in practical applications. The study also provides a guide for establishing FL initiatives, highlighting strategic organization and robust data management to aid future researchers in implementing FL in clinical settings.

Read more about the study here.

Related Resources

Related Resources

Medical personnel looking at a technical device to discuss diagnostic guidelines

2,237 Patients, 11 Hospitals, four HCC Criteria: A Comparison Study

A recent study, conducted across 11 South Korean hospitals, compared the diagnostic performance of four hepatocellular carcinoma (HCC) diagnostic…

mint Lesion screenshot with HCC diagnosis according to APASL, AASLD, LI-RADS, KLCA-NCC, and EASL guidelines

Multicentric Study: Comparison of Diagnostic Guidelines for Hepatocellular Carcinoma

Recent advancements in MRI techniques and tumor biology have led to updated hepatocellular carcinoma (HCC) diagnostic guidelines from various liver…

Schematic visualization of the federated learning study and its data infrastructure

RACOON: A Guide to Bridging the Gap Between Simulated and Real-World Federated Learning Research

Deep learning (DL) has become an important part of radiological image analysis. To train these deep-learning models, access to large and diverse…