Potenzial von longitudinalen Daten aus einzel- und multizentrischen klinischen Studien für die KI-Forschung

Prof. Dr. Hans-Christoph Becker von der Stanford University, ein langjähriger Nutzer von mint Lesion™, teilt in diesem Kurzinterview seine Erfahrungen im Umgang mit der Software. Er spricht über die Reaktion, die er erhielt, als er den mint-Befundbericht zum ersten Mal vorgestellt hat, darüber, wie Patienten von dem longitudinalen Überblick über ihre Krankheit profitieren und über seine Pläne, die strukturierten Daten für die KI-Forschung zu nutzen.

Klicken Sie hier oder auf das Bild oben, um das gesamte Video auf YouTube anzusehen.

Ähnliche Inhalte

Ähnliche Inhalte

Schematische Darstellung der Federated-Learning Studie und ihrer Dateninfastruktur

RACOON: Ein Leitfaden zur Überbrückung der Kluft zwischen simulierter und realer Forschung im Bereich des föderalen Lernens

Deep Learning (DL) ist ein wichtiger Bestandteil der radiologischen Bildanalyse geworden. Um diese Deep-Learning-Modelle zu trainieren, ist der Zugang…

Dieses Bild zeigt mehrere Ärzte vor einem Computer; sie schauen auf ein Bild in der medizinischen Bildgebungssoftware mint Lesion™

BZKF BORN Roll-Out Schulungen Gehen Weiter

Unser Experte Steffen Rupp besuchte kürzlich die Technische Universität München, um die vor Ort stattfindenden BZKF BORN Roll-Out Trainings…

Dieses Bild zeigt einen Scan eines Pleuraergusses

Die Vorhersagekraft des Perikardergusses bei COVID-19-Erkrankungen

Die COVID-19-Pandemie hatte weltweit verheerende Auswirkungen auf die Gesundheitssysteme und erfordert nun ein umfassendes Verständnis des…