Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

Medizinerin liest Pankreas-Studie auf Laptop

Wichtige Bildgebungsmerkmale zur Unterscheidung seltener Pankreastumore

Solid-pseudopapilläre Neoplasien (SPN), auch bekannt als Frantz-Tumore, sind seltene Tumore des Pankreas. Aufgrund überlappender Merkmale von SPN und pankreatischen neuroendokrinen Neoplasien (pNEN), kann sich die Unterscheidung mittels Bildgebung als schwierig überweisen.

Forscher des Universitätsklinikums Heidelberg führten eine Studie durch, um SPN von pNEN mittels präoperativer CT- und MRT-Aufnahmen zu unterscheiden. Sie analysierten die Bilddaten von 39 SPN-Patient:innen und 127 pNEN-Patient:innen.

Die Studie identifizierte drei Hauptmerkmale, die eine Unterscheidung zwischen SPN und pNEN ermöglichen: jüngeres Alter der Patient:innen, fehlende Kontrastverstärkung in der arteriellen Phase und das Vorhandensein einer Kapsel. Diese Merkmale sind in der Routinediagnostik leicht anwendbar und könnten helfen, Fehldiagnosen zu vermeiden.

Lesen Sie hier mehr.

Ähnliche Inhalte

Ähnliche Inhalte

PET-Aufnahmen des Torsos mit relevanten falsch-positiven Befunden, markiert durch rote gestrichelte Kreise, und korrekt erkannten Läsionen (True Positives) in Grün

LMU Klinikum München: Künstliche Intelligenz für das TNM-Staging beim NSCLC – Wie gut sind KI-basierte Segmentierungen wirklich?

Die aktuelle Studie „Artificial intelligence for TNM staging in NSCLC – a critical appraisal of segmentation utility in [18F]FDG PET/CT“ untersucht…

Bild eines Patienten, der einen MRT-Scan bekommt, um zu illustrieren, wie  die RACOON-Projekte in Deutschland, durch Bildgebung, strukturierte Befundung und KI gemeinsam die klinische Forschung verbessern.

RACOON – Bildgebung, Daten & Zusammenarbeit für bessere Entscheidungen

Die moderne Radiologie steht vor einer zentralen Frage: Wie lassen sich Bildgebung und klinische Daten so verbinden, dass Diagnosen präziser,…

Interview mit Prof. Dr. Timm Denecke über das RACOON-MARDER-Projekt zur KI-gestützten Früherkennung von Leberkrebs mittels MRT.

Früherkennung neu gedacht: Wie RACOON-MARDER Leberkrebs früher sichtbar machen will

Das hepatozelluläre Karzinom (HCC) wird oft erst spät entdeckt – mit gravierenden Folgen für Therapie und Überlebenschancen. Das Forschungsprojekt…