Eine kürzlich am UKE Hamburg durchgeführte Studie vergleicht die manuelle und softwaregestützte Auswertung von CT-Untersuchungen nach iRECIST (immune Response Evaluation Criteria in Solid Tumors) bei onkologischen Patienten, die sich einer immunbasierten Behandlung unterziehen. Die Studie, bei der mint Lesion™ für die softwareunterstützte Auswertung verwendet wurde, ergab, dass die softwareunterstützte Auswertung im Vergleich zur manuellen Auswertung zu kürzeren Befundungszeiten, niedrigeren Fehlerraten und einer höheren Übereinstimmung zwischen den befundenden Ärzt:innen führte. Die Forscher:innen kamen daher zu dem Schluss, dass die Verwendung softwaregestützter Lösungen für eine optimale Auswertung des onkologischen Ansprechens gegenüber manuellen Ansätzen vorzuziehen ist.
Software-gestützte CT-Auswertung übertrifft manuelle Methoden in onkologischer Studie
Ähnliche Inhalte
Ähnliche Inhalte
Universitätsklinikum Tübingen: Fortschritte in der Effizienz von MRT bei der Behandlung von Glioblastomen durch Deep Learning
Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen für Patient:innen mit Glioblastomen. Glioblastome, die…
Einblicke in das BORN-Projekt: Entwicklung und Erfolge mit Dr. Maurice Heimer
Das BORN-Projekt des Bayerischen Zentrums für Krebsforschung (BZKF) schreitet in seiner zweiten Förderphase zügig voran. Ein zentraler Aspekt ist die…
Ein Blick auf das BORN-Projekt des BZKF: Interview mit Dr. Maurice Heimer von der Klinik und Poliklinik für Radiologie am LMU Klinikum
Das Bayernweite Onkologische Radiologie Netzwerk (BORN) befindet sich zwischenzeitlich in der zweiten Förderphase und schreitet mit schnellen…