Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

Drei wichtigen Sequenzen (FLAIR, T2, T1 mit Kontrastmittel) in der Glioblastom-Bewertung

Optimierung der Bildgebung bei Glioblastomen: Verbesserung der MRT-Effizienz und -Qualität durch Deep Learning

Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die Scanzeit zu verkürzen und die Bildqualität zu verbessern.

Glioblastome sind aggressive Hirntumore, die eine häufige Überwachung mittels MRT erfordern, was aufgrund langer Scanzeiten und Bewegungsartefakten herausfordernd sein kann. Häufig eingesetzte Methoden zur Verkürzung der Scanzeiten, wie parallele Akquisitionstechniken (PAT) und Compressed Sensing (CS), haben Einschränkungen wie beispielsweise ein verringertes Signal-Rausch-Verhältnis und übermäßig glatte Bilder.

Die Studie mit 33 Patient:innen zeigte, dass DL-optimierte MRT-Sequenzen bei gleichbleibender Diagnosesicherheit die Untersuchungszeit um 30% reduzierten und die Bildqualität verbesserten.

Diese Verbesserungen sind besonders vorteilhaft für Patient:innen, die Schwierigkeiten mit langen MRT-Untersuchungen haben, und stellen einen vielversprechenden Fortschritt in der Behandlung von Glioblastomen dar.

Lesen Sie hier mehr über die Studie.

Ähnliche Inhalte

Ähnliche Inhalte

Study Analyzing the Tumor Growth Rate as a Prognostic Biomarker in Lymphoma Patients Under CAR T-Cell Therapy

Universitätsklinikum München (LMU): Studie zur Analyse der Tumorwachstumsrate als prognostischer Biomarker bei Lymphompatienten unter CAR-T-Zelltherapie

In einer aktuellen Studie [1] untersuchten Forscher des Universitätsklinikums München (LMU) die Rolle der Tumorwachstumsrate (TGR) bei der Vorhersage…

Ein Bild von einer Person, die einen Gehirnscan auf der Programmoberfläche von mint Lesion™ auf einem Computer betrachtet

Neuro-Onkologie vorantreiben: Mint Medical integriert die neu veröffentlichten RANO 2.0-Kriterien in mint Lesion™

Glioblastome und andere Gliome sind die häufigsten bösartigen primären Hirntumorarten, doch es gibt nur wenige wirksame Therapien. Klinische Forschung…

Ein Bild von Radiologen, die auf einen Bildschirm schauen, auf dem das Restaging des HNSCC angezeigt wird

Studie hebt das Potenzial von Radiomics in medizinischen Interventionen hervor

Eine kürzlich an der Medizinischen Universität Innsbruck durchgeführte Studie hebt das Potenzial von Radiomics zur Untersuchung der Effekte einer…