Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die Scanzeit zu verkürzen und die Bildqualität zu verbessern.
Glioblastome sind aggressive Hirntumore, die eine häufige Überwachung mittels MRT erfordern, was aufgrund langer Scanzeiten und Bewegungsartefakten herausfordernd sein kann. Häufig eingesetzte Methoden zur Verkürzung der Scanzeiten, wie parallele Akquisitionstechniken (PAT) und Compressed Sensing (CS), haben Einschränkungen wie beispielsweise ein verringertes Signal-Rausch-Verhältnis und übermäßig glatte Bilder.
Die Studie mit 33 Patient:innen zeigte, dass DL-optimierte MRT-Sequenzen bei gleichbleibender Diagnosesicherheit die Untersuchungszeit um 30% reduzierten und die Bildqualität verbesserten.
Diese Verbesserungen sind besonders vorteilhaft für Patient:innen, die Schwierigkeiten mit langen MRT-Untersuchungen haben, und stellen einen vielversprechenden Fortschritt in der Behandlung von Glioblastomen dar.