Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

Radiologe nutzt KI zur Auswertung medizinischer Bilder

Förderung des föderierten Lernens in der Radiologie in der Praxis

Federated Learning (FL) ermöglicht kollaboratives Modelltraining ohne Datenzentralisierung - ein entscheidender Aspekt für die radiologische Bildanalyse, bei der Datenschutzbestimmungen ansonsten die Verwendung zentraler Datenspeicher verhindern würden. Trotz seiner vielversprechenden Möglichkeiten ist FL jedoch weitgehend auf simulierte Umgebungen beschränkt.

Diese Studie zielt darauf ab, die Lücke zwischen simulierter und realer FL-Forschung zu schließen, indem eine FL-Infrastruktur innerhalb des Deutschen Radiologischen Kooperationsnetzwerks (RACOON), ein Projekt des Netzwerk Universitätsmedizin (NUM) entwickelt wird.

Die Ergebnisse der Studie, bei der mint Lesion™ zur Verarbeitung radiologischer Bilder eingesetzt wird, zeigen, dass FL diese Methoden übertrifft, was seinen Wert für praktische Anwendungen unterstreicht. Die Studie bietet auch einen Leitfaden für die Einrichtung von FL-Initiativen und hebt die strategische Organisation und robuste Datenverwaltung hervor, um künftigen Forschern bei der Implementierung von FL in klinischen Umgebungen zu helfen.

Lesen Sie hier mehr über die Studie.

Ähnliche Inhalte

Ähnliche Inhalte

Study Analyzing the Tumor Growth Rate as a Prognostic Biomarker in Lymphoma Patients Under CAR T-Cell Therapy

Universitätsklinikum München (LMU): Studie zur Analyse der Tumorwachstumsrate als prognostischer Biomarker bei Lymphompatienten unter CAR-T-Zelltherapie

In einer aktuellen Studie [1] untersuchten Forscher des Universitätsklinikums München (LMU) die Rolle der Tumorwachstumsrate (TGR) bei der Vorhersage…

Ein Bild von einer Person, die einen Gehirnscan auf der Programmoberfläche von mint Lesion™ auf einem Computer betrachtet

Neuro-Onkologie vorantreiben: Mint Medical integriert die neu veröffentlichten RANO 2.0-Kriterien in mint Lesion™

Glioblastome und andere Gliome sind die häufigsten bösartigen primären Hirntumorarten, doch es gibt nur wenige wirksame Therapien. Klinische Forschung…

Ein Bild von Radiologen, die auf einen Bildschirm schauen, auf dem das Restaging des HNSCC angezeigt wird

Studie hebt das Potenzial von Radiomics in medizinischen Interventionen hervor

Eine kürzlich an der Medizinischen Universität Innsbruck durchgeführte Studie hebt das Potenzial von Radiomics zur Untersuchung der Effekte einer…