Bleiben Sie auf dem Laufenden: Die Transformation der Radiologie dank strukturierter Befundung und datengesteuerter Ansätze

Erkundigen Sie sich über unsere Aktivitäten, Projekte und Produkt-Updates, informieren Sie sich über die neuesten Branchennachrichten, und erfahren Sie, was uns als Unternehmen und als Team ausmacht.

[Translate to German:]

Data Analytics und Ad-Hoc-Forschung

Die kontextunterstützte Befunderhebung mit mint Lesion™ gewährleistet die Erhebung umfassender, vollstrukturierter Daten in großem Umfang. Auf der RSNA 2016 stellen wir eine web-basierte Schnittstelle zur Visualisierung und Analyse aller in mint Lesion erhobenen oder importierten Daten vor.

Für Patientenkohorten oder Studienkollektive werden beispielsweise Visualisierungen zum Ansprechverhalten der Patienten als übersichtliche Darstellung in Echtzeit angeboten. Des Weiteren erlauben flexibel anpassbare Abfrage- und Filtermöglichkeiten das Auffinden außergewöhnlicher Patientenfälle in einer Kohorte oder die Identifizierung von Patienten mit ähnlichem Erkrankungszustand und Erkrankungsmerkmalen.

Ähnliche Inhalte

Ähnliche Inhalte

Bild zeigt als grafischen Abstrakt Bilder aus der Studie, von MRT Aufnahmen bis zur Auswertung der Delta-Radiomics-Texturmerkmale

Universitätsklinikum Heidelberg: Delta-Radiomics-Features von ADC-Karten als frühe Vorhersagevariable des Behandlungserfolgs bei Lungenkrebs

In dieser prospektiven Studie des Universitätsklinikums Heidelberg wurde untersucht, ob Änderungen von radiomischen Merkmalen in diffusionsgewichteten…

Puzzleteile verbinden sich zu einem interoperablen System

FHIR im Gesundheitswesen: Das Potenzial der Interoperabilität

Im Gesundheitswesen ist die Interoperabilität ein wichtiger Wegbereiter: Interoperable Systeme ermöglichen die nahtlose Kommunikation von…

Drei wichtigen Sequenzen (FLAIR, T2, T1 mit Kontrastmittel) in der Glioblastom-Bewertung

Optimierung der Bildgebung bei Glioblastomen: Verbesserung der MRT-Effizienz und -Qualität durch Deep Learning

Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die…