Bei der Analyse der Daten von 83 Patienten mit kontrastverstärkten CT-Scans verfolgten die Forscher des Universitätsklinikums Ulm die Prävalenz der Sarkopenie zu verschiedenen Zeitpunkten. Sie verwendeten mint Lesion™ für die Muskel-Segmentierung und die Extraktion von 85 radiomischen Merkmalen. Diese Merkmale, die in Formmerkmalen und Merkmalen erster und höherer Ordnung kategorisiert wurden, ermöglichten eine detaillierte Bewertung der Skelettmuskulatur. Maschine Learning Modelle, einschließlich Random Forest, sagten Sarkopenie bei der Erstdiagnose akkurat voraus.
Auch wenn der Zusammenhang zwischen Sarkopenie und Krankheitsverlauf statistisch nicht signifikant war, unterstreicht die Studie das Potenzial der CT-Radiomics und des Machine Learnings in der onkologischen Bildgebung für eine genauere Diagnostik und Prognostik.