Potential of longitudinal data from single site and multi-center clinical trials for AI-research

Prof. Dr. Hans-Christoph Becker from Stanford University, a long-standing user of mint Lesion™, shares his experience of using the software in this brief interview. He talks about the reaction he received when sharing the mint report for the first time, how patients benefit from the longitudinal overview of disease, and his plans to use the structured data for AI research.

Click here or on the image above to watch the full video on YouTube.

Related Resources

Related Resources

Screenshot of structured reading template for NSCLC Staging

Software-Assisted Structured Reporting Improves TNM Classification Accuracy in NSCLC Staging

In this multi-center collaboration, thoracic radiology experts developed and evaluated a software-assisted structured reporting (SR) framework for…

AI lung nodules detection in contextflow and Lung-RADS in mint Lesion

Leverage Advanced AI-Driven Nodule Detection and Analysis for Comprehensive Patient Care

Discover the power of streamlined AI-driven lung screening with contextflow ADVANCE Chest CT integrated into mint Lesion. With automated lung nodule…

Hands holding a glass lung

Comparison of iRECIST and RECIST 1.1 for Evaluating Immunotherapy in Melanoma and Non-Small Cell Lung Cancer

In a retrospective study conducted at the University Hospital Cologne, the radiological criteria iRECIST and RECIST 1.1 were compared for assessing…