Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Image of a female doctor holding a hologram of a lung

Structured Reporting Improves TNM Classification Accuracy and Radiologist Satisfaction

In a collaborative, multi-center study, radiology experts developed and validated in mint Lesion a software-assisted structured reporting (SR) framework for non-small cell lung cancer (NSCLC) staging.

Findings revealed that SR significantly improved TNM classification accuracy, reducing common errors in T-, N-, and M-staging compared to traditional free-text reports. Radiologists using SR were more likely to classify cases correctly and rated the tool highly for enhancing report quality, completeness, and interdisciplinary communication. This study suggests that SR may not only improve clinical accuracy but also support data standardization for future lung cancer research.

Read a summary of the study here.

Related Resources

Related Resources

The challenges of TNM-staging for head and neck tumors - Interview with Prof. Dr. Beer

Next to clinical examination and endoscopy, cross-sectional imaging plays an important role in the diagnosis of head and neck tumors. Moreover, the…

Cincinnati Children's Hospital Medical Center: Study shows variable correlation of change in DIPG tumor size among different measurement strategies

A recent prospective study [1] conducted by researchers at Cincinnati Children’s Hospital Medical Center compared manual 2D, semi-automated 2D, and…

Potential of using structured data from clinical trials and routine for AI and radiomics research

Dr. Nils Grosse Hokamp shares his experience of using mint Lesion™ at the University Hospital Cologne in this brief interview. He talks about how they…