Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Image of a female doctor holding a hologram of a lung

Structured Reporting Improves TNM Classification Accuracy and Radiologist Satisfaction

In a collaborative, multi-center study, radiology experts developed and validated in mint Lesion a software-assisted structured reporting (SR) framework for non-small cell lung cancer (NSCLC) staging.

Findings revealed that SR significantly improved TNM classification accuracy, reducing common errors in T-, N-, and M-staging compared to traditional free-text reports. Radiologists using SR were more likely to classify cases correctly and rated the tool highly for enhancing report quality, completeness, and interdisciplinary communication. This study suggests that SR may not only improve clinical accuracy but also support data standardization for future lung cancer research.

Read a summary of the study here.

Related Resources

Related Resources

RACOON-RESCUE is Advancing Pediatric Non-Hodgkin Lymphoma Care

Pediatric Non-Hodgkin Lymphoma (NHL) is the fourth most common tumor in children and adolescents, yet its radiological methods lack standardization,…

Screenshot of structured reading template for NSCLC Staging

Software-Assisted Structured Reporting Improves TNM Classification Accuracy in NSCLC Staging

In this multi-center collaboration, thoracic radiology experts developed and evaluated a software-assisted structured reporting (SR) framework for…

AI lung nodules detection in contextflow and Lung-RADS in mint Lesion

Leverage Advanced AI-Driven Nodule Detection and Analysis for Comprehensive Patient Care

Discover the power of streamlined AI-driven lung screening with contextflow ADVANCE Chest CT integrated into mint Lesion. With automated lung nodule…