Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

Hands-on with mint Lesion™ at ESOI Autumn Workshop in Munich

It was a great pleasure to participate at the Autumn Workshop of European Society of Oncological Imaging (ESOI), that took place in Munich from…

James, please!

Intelligent, context driven assistance systems guide users in a standardized way through the reading process and generate all relevant information on…

HCC Profiles

Hepatocellular carcinoma (HCC) requires thorough evaluation of the tumor stage to ensure precise prognosis and clear treatment recommendations,…