Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

How mint Lesion 3.5 helps you to benefit from Artificial Intelligence in Radiology

According to researchers, every adult makes 35,000 decisions each day. While there are no numbers in literature about how many decisions a radiologist…

MROC: The Impact of mpMRI on the Staging and Management of Patients with Suspected or Confirmed OC

Funded by the National Institute of Health Research (NIHR) and sponsored by the Imperial College London, the MROC study boasts impressive figures: 645…

AI-powered quantification of bone metastasis in prostate cancer

Prostate cancer is the second most common cancer among men, and there are now effective treatments for the disease. New therapies available on the…