Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Doctors looking at MRI scans to evaluate a glioblastoma.

Optimizing Glioblastoma Imaging: Enhancing MRI Efficiency and Quality with Deep Learning

This study investigates the use of deep learning (DL) to optimize MRI protocols for glioblastoma patients, aiming to reduce scan time and improve image quality.

Glioblastomas are aggressive brain tumors requiring frequent MRI monitoring, which can be challenging due to lengthy scan times and motion artifacts. Traditional methods to shorten scan times, like parallel acquisition techniques (PAT) and compressed sensing (CS), have limitations such as reduced signal-to-noise ratio and overly smooth images.

The study, involving 33 patients, found that DL-optimized MRI sequences reduced scan time by 30% while enhancing image quality and maintaining diagnostic accuracy. These improvements are particularly beneficial for patients who struggle with lengthy MRI procedures, offering a promising advancement in glioblastoma care.

Read more about the study here.

Related Resources

Related Resources

6 years of Mint at University Hospital Basel - Interview with PD Dr. Tobias Heye

Since the end of 2011, mint Lesion™ has been in use at the University Hospital in Basel, Switzerland, – initially merely as a tool for clinical…

University Hospital Ulm: Pilot study shows discriminatory power of MRI-based 3d texture analysis for bone lesions

Distinguishing between enchondroma, a benign tumor, and low-grade chondrosarcoma, which is a low-aggressivity malignancy, is a frequent challenge, as…

4 Questions – 4 Answers // Imaging in Clinical Trials

Mint Medical, Inc. Vice President of Clinical Trials, Kelie Luby Discusses Advances in Imaging Analysis in Clinical Trials and What’s Next for Mint…