Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Radiologist using for medical image analysis

Advancing Real-World Federated Learning in Radiology

Federated Learning (FL) enables collaborative model training without data centralization – a crucial aspect for radiological image analysis where privacy regulations would otherwise hinder the use of centralized data lakes. Despite its promise, however, FL has largely been confined to simulated environments.

This study aims to bridge the gap between simulated and real-world FL research by developing an FL infrastructure within the German Radiological Cooperative Network (RACOON), a project by the Netzwerk Universitätsmedizin (NUM).

Using mint Lesion™ to process radiological images, the study’s results show FL outperforms these methods, underscoring its value in practical applications. The study also provides a guide for establishing FL initiatives, highlighting strategic organization and robust data management to aid future researchers in implementing FL in clinical settings.

Read more about the study here.

Related Resources

Related Resources

Image showing MR image analysis using the dedicated semiautomatic software tool mint Lesion™

LMU Klinikum Munich: Monitoring Prostate Cancer Treatments with VTP and HIFU - The Use of Multiparametric MRI

The prospective study conducted by LMU Klinikum Munich investigates the treatment of localized prostate cancer using two techniques: vascular-targeted…

RACOON FADEN: Pioneering Early Detection of Adenomyosis – Insights from Prof. Mechsner (Charité Berlin) and Prof. May (University Hospital Erlangen)

Adenomyosis is a gynecological condition of the uterus and a form of endometriosis. Approximately 10 percent of women of reproductive age are affected…

Virtual examination of human lungs on a modern interface screen

Early Detection of Treatment Response in Lung Cancer Using Delta-Radiomics Features

The study conducted by Heidelberg University Hospital investigates the use of diffusion-weighted MRI (DWI) to predict early treatment outcomes in…