Impactful Findings from Medical Imaging Research

Dive into a collection of short summaries of recent medical imaging studies that shed light on hot topics such as structured reporting, texture analysis, radiomics, or novel imaging biomarkers. Identify the role mint Lesion™ played in these studies and contact us if you have any questions about our software platform.

Here you will find a detailed list of scientific publications in which mint Lesion™ has had a significant impact:

Explore the publications

Screenshot of structured reading template for NSCLC Staging

Software-Assisted Structured Reporting Improves TNM Classification Accuracy in NSCLC Staging

In this multi-center collaboration, thoracic radiology experts developed and evaluated a software-assisted structured reporting (SR) framework for staging non-small cell lung cancer (NSCLC). The study assessed the framework’s effectiveness in enhancing the accuracy of TNM classification and explored institutional standards, preferences, and perceptions of SR among participating institutions.

The software-assisted SR, featuring semi-automated TNM classification of NSCLC in mint Lesion significantly improved classification accuracy compared to traditional free-text reporting (FTR) (p = 0.01). Radiologists using SR were 1.707 times more likely to correctly classify TNM status. The most frequent classification errors were related to T-stage assessment, particularly in tumor size measurement and evaluation of local infiltration. Errors in N- and M-stage classification often resulted from incorrect lesion localization.

"The results of this proof-of-concept study suggest a valuable impact of software-assisted SR on TNM accuracy in NSCLC staging," the authors note.

The tool proved highly reliable, consistently generating accurate TNM classifications based on radiologists’ inputs. This improvement in classification accuracy led to a reduction in both upstaging and downstaging errors.

In a pre- and post-validation survey, participating radiologists expressed generally positive attitudes toward SR for NSCLC staging, rating its potential impact favorably across multiple categories. They acknowledged its value in improving report quality, completeness, and interdisciplinary communication. Positive perceptions of SR increased following hands-on use, indicating that practical experience may enhance its perceived benefits. Additionally, software-assisted SR improved radiologists' understanding of TNM criteria, suggesting these tools may serve as valuable educational aids.

The study also highlights SR's potential to support secondary data use and research. The standardized format of SR can facilitate the creation of large-scale registries, contributing to a deeper understanding of lung cancer trends and treatment outcomes.

The findings underscore the importance of addressing implementation challenges, such as digital infrastructure limitations, to fully realize SR’s potential in routine clinical practice.

This study was conducted as a collaborative effort within the Bavarian Oncologic Radiology Network (BORN) of the Bavarian Cancer Research Center (BZKF). Participating centers included radiology departments from LMU Hospital Munich, Technical University Munich, University Hospital Erlangen, University Hospital Regensburg, University Hospital Würzburg, and University Hospital Augsburg.

 

Read the original publication here.

Heimer, M.M., Dikhtyar, Y., Hoppe, B.F. et al. 2024. ”Software-assisted structured reporting and semi-automated TNM classification for NSCLC staging in a multicenter proof of concept study.” Insights Imaging.

Related Resources

Related Resources

The challenges of TNM-staging for head and neck tumors - Interview with Prof. Dr. Beer

Next to clinical examination and endoscopy, cross-sectional imaging plays an important role in the diagnosis of head and neck tumors. Moreover, the…

Cincinnati Children's Hospital Medical Center: Study shows variable correlation of change in DIPG tumor size among different measurement strategies

A recent prospective study [1] conducted by researchers at Cincinnati Children’s Hospital Medical Center compared manual 2D, semi-automated 2D, and…

Potential of using structured data from clinical trials and routine for AI and radiomics research

Dr. Nils Grosse Hokamp shares his experience of using mint Lesion™ at the University Hospital Cologne in this brief interview. He talks about how they…