Stay Informed: Transforming Radiology with Structured Reporting and Data-Driven Approaches

Dive into our activities, projects, and product updates. Catch on the latest industry news and learn who we are as a company and as a team.

Someone reading a scientific publication on CT Radiomics, sarcopenia, gastric or esophageal cancer

CT-Radiomics unveils insights into sarcopenia's impact on esophageal and gastric cancer prognosis

Analyzing 83 patients with contrast-enhanced CT scans, University Hospital Ulm researchers tracked the prevalence of sarcopenia at different time points. They used mint Lesion™ for muscle segmentation and extraction of 85 radiomic features. These features, categorized into shape, first-order, and higher-order types, provided a detailed assessment of skeletal muscles. Machine learning models, including Random Forest, accurately predicted sarcopenia at the initial diagnosis.

While sarcopenia's link to disease progression lacked statistical significance, the study highlights CT radiomics and machine learning's potential in oncological imaging for refined diagnostics and prognostics.

Read more about the study here.

Related Resources

Related Resources

Novel oncologic therapy response criteria (iRECIST and more)

Advances in oncology therapies, such as novel immune-related agents, require adapted and refined criteria and guidelines for the assessment and…

Data Analytics and Instant-Trial Research

Context-driven read procedures in mint Lesion™ facilitate the generation of well-structured data on a large scale. At RSNA 2016, Mint Medical presents…

ECR 2016 in Vienna – Structured Reporting awakens

The ECR 2016 in Vienna achieved a new record in number of participants: 25.998 people visited the congress. Mint Medical also realized a personal best…