Wissensportal für Fachkräfte der medizinischen Bildgebung: Radiologie durch strukturierte Befundung, datenbasierte Ansätze und multizentrische Forschung weiterentwickeln

Erhalten Sie Zugang zu wegweisender Forschung, innovativen Fallbeispielen und gemeinsamen Projekten, die die Radiologie weltweit vorantreiben. Entdecken Sie unsere Aktivitäten und Produktneuigkeiten und lernen Sie uns als Unternehmen und Team kennen.

[Translate to German:]

Strahlende Gesichter beim ESOI Autumn Workshop in München

Mit großer Freude blicken wir auf den Autumn Workshop der European Society of Oncological Imaging (ESOI) zurück, der am 05. und 06. November in München zum Thema „Imaging Cancer: Staging and response to therapy“ stattgefunden hat.

Teilnehmer aus 16 Ländern hatten die Gelegenheit, neue Erkenntnisse zum Staging und Monitoring in der onkologischen Radiologie zu gewinnen und diese direkt in mint Lesion™ anhand konkreter Patientenfälle zu vertiefen. Eine hohe Bandbreite verschiedener Tumorentitäten wurden dabei anschaulich von einem internationalen Expertenteam vorgestellt.

Ähnliche Inhalte

Ähnliche Inhalte

Virtuelle Untersuchung von menschlichen Lungen auf einem modernen Benutzeroberflächenbildschirm.

Früherkennung des Behandlungserfolgs bei Lungenkrebs mithilfe von Delta-Radiomics-Features

Die Studie der Uniklinik Heidelberg untersucht die Nutzung der diffusionsgewichteten MRTs (DWI), um frühe Therapieergebnisse bei Patient:innen mit…

Bild zeigt als grafischen Abstrakt Bilder aus der Studie, von MRT Aufnahmen bis zur Auswertung der Delta-Radiomics-Texturmerkmale

Universitätsklinikum Heidelberg: Delta-Radiomics-Features von ADC-Karten als frühe Vorhersagevariable des Behandlungserfolgs bei Lungenkrebs

In dieser prospektiven Studie des Universitätsklinikums Heidelberg wurde untersucht, ob Änderungen von radiomischen Merkmalen in diffusionsgewichteten…

Drei wichtigen Sequenzen (FLAIR, T2, T1 mit Kontrastmittel) in der Glioblastom-Bewertung

Optimierung der Bildgebung bei Glioblastomen: Verbesserung der MRT-Effizienz und -Qualität durch Deep Learning

Diese Studie untersucht den Einsatz von Deep Learning (DL) zur Optimierung von MRT-Protokollen bei Patient:innen mit Glioblastomen, mit dem Ziel, die…