LMU Klinikum München: Datenvisualisierung und -analyse in klinischen Studien mit Imaging Endpoints

“mint Analytics erweitert die Möglichkeiten der strukturierten Response-Beurteilung in mint Lesion™ durch die sofortige Visualisierung der gesammelten Daten als Ganzes oder für individuelle Studien,“ berichtet PD Dr. Kunz, Leiter der Onkologischen Bildgebund sowie des Onkologischen Studienzentrums am LMU Klinikum München.

PD Dr. Kunz berichtet, wie er und sein Team den Status ihrer klinischen Studien problemlos verfolgen können und beschreibt, wie Sponsoren und Imaging CROs von der Nutzung von mint Lesion™ und dessen Add-On mint Analytics profitieren können.

Lesen Sie die Success Story hier.

Ähnliche Inhalte

Ähnliche Inhalte

Portrait von Dr. Maurice Heimer, ist Arzt in Weiterbildung für Radiologie

Ein Blick auf das BORN-Projekt des BZKF: Interview mit Dr. Maurice Heimer von der Klinik und Poliklinik für Radiologie am LMU Klinikum

Das Bayernweite Onkologische Radiologie Netzwerk (BORN) befindet sich zwischenzeitlich in der zweiten Förderphase und schreitet mit schnellen…

Schematische Darstellung der Federated-Learning Studie und ihrer Dateninfastruktur

RACOON: Ein Leitfaden zur Überbrückung der Kluft zwischen simulierter und realer Forschung im Bereich des föderalen Lernens

Deep Learning (DL) ist ein wichtiger Bestandteil der radiologischen Bildanalyse geworden. Um diese Deep-Learning-Modelle zu trainieren, ist der Zugang…

Eine Ärztin benutzt ein technisches Gerät. Hintergrund zeigt Punkte und Linien, um verbundene Daten darzustellen.

Die Macht der KI und die entscheidende Rolle der strukturierten Befundung

Wir alle kennen die Redewendung „ein Bild sagt mehr als tausend Worte“. In bestimmten Bereichen sind tausend Worte jedoch einfach zu viel und sogar…